
Ruprecht-Karls-University Heidelberg
faculty of computer science
Special Interest Group on High Performance I/O

Software pratical for beginners

Distribution functions in PVFS2,
hints in MPICH2

and
performance measurement

Tobias Eberle
Dossenheimer Landstraße 90

69121 D-Heidelberg
Germany

phone: +49-6221-8936490
e-mail: tobias.eberle@gmx.de

My partner:
Frederik Grüll

e-mail: frederik.gruell@web.de

March and April 2005

Supervisors:
Dipl. Inf. Hipolito Vasquez
Prof. Dr. Thomas Ludwig

mailto:Tobias Eberle <tobias.eberle@gmx.de>
mailto:Frederik Gr{accent 127upenalty @M hskip z@skip }ll <frederik.gruell@web.de>

PVFS2 is an open source parallel filesystem. A file saved on PVFS2 is scattered over several I/O-
servers. This scattering is done by a distribution function whose implementation is described here.
Also it is presented how PVFS2 does the data file→ I/O-server assignment and how you can hardcode
a new assignment pattern. To set distribution parameters by MPI programs, using the MPICH2
implementation, new hints such as distribution name for using a specified distribution function are
described. At last the performance of several distribution functions are measured and compared.

Contents

1 Introduction 4

2 Distribution functions in PVFS2 5
2.1 Task of a distribution and data files . 5
2.2 Distribution functions shipped with PVFS2 . 5
2.3 New distribution function: varstrip dist . 5
2.4 How to implement a new distribution function . 6

2.4.1 Location of distribution functions in the PVFS2 source code 6
2.4.2 Distribution function header file . 6
2.4.3 Description of methods a distribution function must implement 6
2.4.4 Register the distribution . 8

2.5 Changing data file assignment to I/O-servers . 9

3 Hints in MPICH2 10
3.1 Existing hints . 10
3.2 Using hints . 10
3.3 New hints . 11

3.3.1 striping unit . 11
3.3.2 distribution name . 11

3.4 Add-on for distribution function parameters . 11
3.5 How to implement a new hint . 12

3.5.1 Overview . 12
3.5.2 Example: Implementation of distribution name 12

4 Performance measurement of distribution functions 15
4.1 Results . 15

4.1.1 ext3 . 15
4.1.2 PVFS2: simple stripe . 15
4.1.3 PVFS2: varstrip distribution . 16
4.1.4 mpi-io-test . 16
4.1.5 b eff io . 16

4.2 How to do performance measurement . 16
4.2.1 Writing . 16
4.2.2 Reading . 17
4.2.3 Get rid off cache effects on reading . 17

A Results of the measurements 19
A.1 Bonnie++’ output . 19
A.2 Plots . 19

B Patches 27
B.1 Applying patches . 27
B.2 Available patches . 27

3

1 Introduction

Assume that you have written an MPI program using MPICH2 that calculates something very difficult
and now you want to write this results into one single file. The simplest and slowest solution is to
send all data to one I/O-server which writes it to its harddisk. A faster solution is to use a parallel
filesystem such as PVFS2 which scatters the file across several servers and the fastest solution is to
use PVFS2 and assure that every compute node writes its data to its own harddisk. The task was to
implement these three solutions and to measure the bandwidth that can be achieved by each one for
comparing their performance.

node02master1 node04node03node01

File600MB

200MB
100MB150MB50MB

Figure 1.1: Solution 1: Every compute node sends its data to master1

node02master1 node04node03node01

File100MB200MB100MB 150MB50MB

Figure 1.2: Solution 3 using varstrip distribution: One single file, but every compute node writes to
its own harddisk (see chapter 2.3)

4

2 Distribution functions in PVFS2

2.1 Task of a distribution and data files

The task of a distribution function is to scatter a file across the existing I/O-servers in a specific way.
Each I/O-server is assigned to a data file which is saved on the harddisk of the server.

2.2 Distribution functions shipped with PVFS2

There are two distribution functions that are shipped with PVFS2:

• basic dist
basic_dist is a very simple distribution function: All the data is saved at one I/O-server.
Therefore it is not very useful, maybe for testing purpose.

• simple stripe
A file is devided into strips of the same size. The first strip is saved on I/O-server 1, the second
on I/O-server 2 and so on. If all I/O-servers were used the next strip is saved on the first one.
This method is also called round-robin. The default strip size is 64KB. You can change the strip
size within an MPI program by using the hint striping_unit. The striping_unit hint is not
implemented by MPICH2 version 1.0.1 yet. You must apply the patch described in chapter 3.3.1.

2.3 New distribution function: varstrip dist

To implement the third solution1 we need a more flexible distribution function than simple stripe.
varstrip dist is like simple stripe, but the strips are flexible in size and assigned to a specified
data file. varstrip dist is configured with a string which has the following format:

<config> ::= {<datafile number>:<strip size>[k|K|m|M|g|G];}+
<datafile number> ::= a value between 0 and (number of I/O servers - 1)
<strip size> ::= strip size in: k, K: Kilobyte

m, M: Megabyte
g, G: Gigabyte
no specification: Byte

As you can see data file numbers can be included more than once. If you write more bytes than the
whole size specified by this configuration string, the same format is used again.

Example

For the diagram shown in the introduction the strips parameter would be:

strips = "0:100M;1:200M;2:52428800;3:150M;4:102400K"

1Using PVFS2 and asuring that every compute node writes to its own harddisk

5

2.4 How to implement a new distribution function

2.4.1 Location of distribution functions in the PVFS2 source code

The distribution function specific code is located at /src/io/description/ in the PVFS2 source
code:2

teberle@master1:~/src/pvfs2/src/io/description$ ls
dist-basic.c module.mk pint-distribution.h pvfs-request.c
dist-varstrip-parser.c module.mk.in pint-request.c usage-notes.txt
dist-varstrip-parser.h pint-dist-utils.c pint-request.h
dist-varstrip.c pint-dist-utils.h pvfs-distribution.c
dist-simple-stripe.c pint-distribution.c pvfs-distribution.h

The dist-* files are the distributions themself. We will have a closer look at them in chapter 2.4.3.
pint-dist-utils.* contain the default implementation of some distribution function methods and
the distribution registration and pint-distribution.* contain the internal representation of a dis-
tribution. The other files are not needed for our purpose.

2.4.2 Distribution function header file

This file should be located at /include and be named pvfs2-dist-distribution name.h. It includes
a struct that contains all parameters of the distribution function.

Example: varstrip dist

The parameter struct is defined as

struct PVFS_varstrip_params_s
{

char strips[PVFS_DIST_VARSTRIP_MAX_STRIPS_STRING_LENGTH];
};
typedef struct PVFS_varstrip_params_s PVFS_varstrip_params;

The format of this string is described in 2.3.

2.4.3 Description of methods a distribution function must implement

First, we need two naming conventions: The logical offset of a file is the offset of a byte inside of
the single file we write and the physical offset is the offset of the same byte inside of the data file
it belongs to.

Distribution functions have to implement to following methods:

PVFS_offset (*logical_to_physical_offset)(void* params,
uint32_t dfile_nr,
uint32_t dfile_ct,
PVFS_offset logical_offset);

logical_to_physical_offset() returns the physical offset inside of the data file, specified with
dfile_nr, that corresponds to the logical offset. dfile_ct contains the number of data files used
and params is a pointer to the parameter structur. The documentation3 says that if the logical offset
does not belong to the data file, the last physical offset belonging to the data file should be returned.
In practise this issue never happend to me and I have not implemented this to varstrip dist.

2You can download the source code from http://www.pvfs.org/pvfs2/
3/doc/design/distributions.pdf

6

PVFS_offset (*physical_to_logical_offset)(void* params,
uint32_t dfile_nr,
uint32_t dfile_ct,
PVFS_offset physical_offset);

physical_to_logical_offset() is logical_to_physical_offset() vice versa. It returns the logi-
cal offset that belongs to the physical offset inside of data file number dfile_nr.

PVFS_offset (*next_mapped_offset)(void* params,
uint32_t dfile_nr,
uint32_t dfile_ct,
PVFS_offset logical_offset);

next_mapped_offset() returns the logical offset next to logical_offset which belongs to the data
file number dfile_nr. If logical_offset already belongs to it then logical_offset must be re-
turned.

PVFS_size (*contiguous_length)(void* params,
uint32_t dfile_nr,
uint32_t dfile_ct,
PVFS_offset physical_offset);

Getting the physical offset of dfile_nr contiguous_length() returns the number of bytes that are
continguous in the logical file and saved into this data file. For example if the distribution function is
simple stripe, the strip size 65536 bytes and the physical offset 30000, then 65536− 30000 = 35536
is returned. Attention: Is physical offset equal to 65535 (the last byte in the strip), then 1 is returned!

PVFS_size (*logical_file_size)(void* params,
uint32_t dfile_ct,
PVFS_size *psizes);

logical_file_size() returns the size of the logical file in bytes. *psizes is a pointer to an array
with dfile_ct items that contains the file sizes of each data file.

int (*get_num_dfiles)(void* params,
uint32_t num_servers_requested,
uint32_t num_dfiles_requested)

get_num_dfiles() returns the number of used data files. This number must not be greater than
num_servers_requested. num_dfiles_requested is the number of data files the user requested
by his program.4 There is a default implementation called PINT_dist_default_get_num_dfiles()
which returns either the number of data files requested if greater than zero or the number of servers
requested.

int (*set_param)(const char* dist_name,
void* params,
const char* param_name,
void* value);

Sets a parameter. dist_name contains the distribution name, params is a pointer to the structure
that contains all parameters of the distribution function, param_name is the name of the parameter
defined in the structure and *value is a pointer to a variable that contains the value. It has the same
type as the parameter. There is a default implementation called PINT_dist_default_set_param().

void (*encode_lebf)(char **pptr, void* params);

This method is used to save all parameters inside of a contiguous space in memory. **pptr points
to the space in memory that must be used. You must save the parameter in little endian for-
mat. To convert parameters to this format PVFS2 contains many predefined macros. To use them

4An MPI program uses the hint striping factor to request a number of data files.

7

you must call #define __PINT_REQPROTO_ENCODE_FUNCS_C before you include pvfs2-types.h and
pint-distribution.h respectively. Have a look at src/proto/endecode-funcs.h to discover the
converting macros.

void decode_lebf(char** pptr, void* params)

This method does the opposite of encode_lebf.

void registration_init(void* params)

registration_init() is called at distribution registration time. We must register our parameters
here. To do so, we must call PINT_dist_register_param() with the following parameters: distri-
bution name, parameter name as string, parameter structure as defined by the header file and the
parameter itself. For example varstrip distribution calls:

PINT_dist_register_param(PVFS_DIST_VARSTRIP_NAME, "strips",
PVFS_varstrip_params, strips)

All the implemented methods should be saved to /src/io/description/dist-distribution name.c.
Do not forget to include this filename into /src/io/description/module.mk.in and run ./configure
again, otherwise the distribution function does not get compiled by running make.

2.4.4 Register the distribution

In order that PVFS2 does know about a distribution function it must be registered. This is done in
two steps:

1. Add the following to the file that contains the distribution function methods:

/* default parameters */
static PVFS_varstrip_params varstrip_params = { "\0" };

/* struct with all my implemented methods */
static PINT_dist_methods varstrip_methods = {

logical_to_physical_offset,
physical_to_logical_offset,
next_mapped_offset,
contiguous_length,
logical_file_size,
get_num_dfiles,
set_param,
encode_lebf,
decode_lebf,
registration_init

};
/* fill the internal pvfs2 distribution interface */
PINT_dist varstrip_dist = {

PVFS_DIST_VARSTRIP_NAME, /* distribution name */
roundup8(PVFS_DIST_VARSTRIP_NAME_SIZE), /* name size */
roundup8(sizeof(PVFS_varstrip_params)), /* param size */
&varstrip_params,
&varstrip_methods

};

2. Add “extern PINT_dist varstrip_dist“ to /src/io/description/pint-dist-utils.c add
and

8

/* Register the varstrip distribution */
PINT_register_distribution(&varstrip_dist);

to int PINT_dist_initialize(void).

2.5 Changing data file assignment to I/O-servers

After we have written a new distribution function the next problem to solve is to assure that each
compute node writes on its own harddisk. The data file → I/O-server assignment is done inside of

/src/common/misc/pint-cached-config.c::PINT_cached_config_get_next_io()

The current default behaviour is to select one server randomly that gets data file number 0 and then
go through the list of available servers. To get fixed data file assignment edit this method and set
jitter to a fixed value. You can print the assignment by adding

int iTmp;
fprintf(stderr, "Data file number: %d - Server name: %s\n", i,

PVFS_mgmt_map_addr(msg_p->fs_id, sm_p->cred_p,
msg_p->svr_addr, &iTmp));

to the end of the for-loop inside of

/src/client/sysint/sys-create.sm::create_datafiles_setup_msgpair_array()

You can also use my patch to add this code.5

5see chapter B.2 in the appendix

9

3 Hints in MPICH2

Hints are used by MPI programs to pass parameters to MPI File * methods. They are simple key-
value pairs.

3.1 Existing hints

Currently available hints provided by MPICH2 version 1.0.1 that can be used with PVFS2 are:

• striping factor: striping factor can be used to request the number of data files that should
be used. The striping factor is only relevant at file creation time.

3.2 Using hints

Using hints is pretty easy:

MPI_File mpiFileHandle;
MPI_Info mpiFileInfo;
/* create MPI Info object */
MPI_Info_create(&mpiFileInfo);
/* set striping_unit to 8MB*/
MPI_Info_set(mpiFileInfo, "striping_unit", "8388608");
/* open the file write only, create the file if not exists */
MPI_File_open(MPI_COMM_WORLD, "pvfs2:/path/file",

MPI_MODE_WRONLY | MPI_MODE_CREATE,
mpiFileInfo, &mpiFileHandle);

/* set file view of this process */
MPI_File_set_view(mpiFileHandle,

iRank * iMbytes * 1024 * 1024 * sizeof(char), MPI_BYTE,
MPI_BYTE, "native", MPI_INFO_NULL);

/* write some data to file */
MPI_File_write(mpiFileHandle, acBuffer, iMbytes * 1024 * 1024, MPI_BYTE,

MPI_STATUS_IGNORE);
/* close file */
MPI_File_close(&mpiFileHandle);
/* delete MPI Info object */
MPI_Info_free(&mpiFileInfo);

The example above opens a file write only and writes some data to it. It uses the simple stripe
distribution with a strip size of about 8MB. To use hints an MPI Info object must be created using int
MPI Info create(MPI Info *info). With int MPI Info set(MPI Info info, char *key, char
*value) hints are set. After finishing the use of the info object it must be destroyed with int
MPI Info free (MPI Info *info); the parameter is automatically set to MPI INFO NULL.
For further information about methods manipulating an info object have a look at http://www-
unix.mcs.anl.gov/mpi/www/www3/

10

http://www-unix.mcs.anl.gov/mpi/www/www3/
http://www-unix.mcs.anl.gov/mpi/www/www3/

3.3 New hints

3.3.1 striping unit

With striping unit the strip size of simple stripe can be set. Default is 65536 bytes.

Example

MPI_Info_set(mpiFileInfo, "striping_unit", "8388608");

3.3.2 distribution name

distribution name is used to choose the distribution function. simple stripe is the default distri-
bution function that is used if the hint is not set. If the specified distribution function does not exist
program execution is aborted.

Example

MPI_Info_set(mpiFileInfo, "distribution_name", "simple_stripe");

3.4 Add-on for distribution function parameters

Because it is very circumstantial to implement a hint for every parameter of all distribution func-
tions and to avoid recompilation of MPICH2 if a new distribution function should be used I have
implemented a general solution which consists of a defined key format that is parsed by MPICH2.

Key format

<Key> ::= <distribution name>:<type>:<parameter name>
<distribution name> ::= simple_stripe|basic_dist|varstrip_dist|...
<type> ::= [unsigned]int|[unsigned]int64|char|string|double
<parameter name> ::= <parameter the name defined by the distribution>

Examples

1. The striping unit can now be set another (more complicated ;-)) way. The parameter of
simple stripe is called strip size that is from type PVFS size which is a int64.

MPI_Info_set(mpiFileInfo, "simple_stripe:int64:strip_size", "8388608");

2. The parameter of varstrip dist is a string called strips:

MPI_Info_set(mpiFileInfo, "varstrip_dist:string:strips", "0:100000;1:200000");

Notes

• To use this add-on you must set distribution name even if the default distribution function is
used!

• Parameters containing not used distribution function names are ignored.
11

3.5 How to implement a new hint

3.5.1 Overview

MPICH2 includes ROMIO1 which implements the I/O features of MPI22. The file system specific
code of ROMIO is called ADIO3. In the source code of MPICH24 PVFS2 specific code is located at

/src/mpi/romio/adio/ad_pvfs2/

The important files are:

• ad pvfs2 hints.c

void ADIOI_PVFS2_SetInfo(ADIO_File fd, MPI_Info users_info, int *error_code)

is implemented in this file. user_info contains all hints the user set in his MPI program. The
method puts them to fd->info. It also checks that all processes belonging to the communicator
have got the same hint value.
Only hints that are implemented by this method can be used by the open, read and write
methods.

• ad pvfs2 open.c
Opens a file. All hints that are only relevant at file creation time must be implemented there.

• ad pvfs2 read.c, ad pvfs2 write.c
Reading data from a file and writing data to a file. Hints that are passed to MPI File read()
and MPI File write() must be implemented there.

3.5.2 Example: Implementation of distribution name

/src/mpi/romio/adio/ad pvfs2/ad pvfs2 hints.c

The code for the new hint must be included into the body of this if-clause:

/* any user-provided hints? */
if (users_info != MPI_INFO_NULL) {

/* code for new hint */
}

Code for distribution name added there:

/* hint: distribution_name */
/* allocate memory for value */
char *szDistributionName = (char *)ADIOI_Malloc((MPI_MAX_INFO_VAL+1)*sizeof(char));
/* initialize memory */
memset(szDistributionName, ’\0’, MPI_MAX_INFO_VAL+1);
/* get the value */
MPI_Info_get(users_info, "distribution_name",

MPI_MAX_INFO_VAL, szDistributionName, &flag);

/* does the user set the hint? */

1http://www-unix.mcs.anl.gov/romio/
2http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
3abstract device I/O layer
4http://www-unix.mcs.anl.gov/mpi/mpich2/

12

http://www-unix.mcs.anl.gov/romio/
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
http://www-unix.mcs.anl.gov/mpi/mpich2/

if (flag)
{

/* assure that every process belonging to the communicator does have
* the same hint. */
char *szTmpValue = (char *) ADIOI_Malloc((MPI_MAX_INFO_VAL+1)*sizeof(char));
strcpy(szTmpValue, szDistributionName);
/* rank 0 broadcasts the distribution name to the other ranks */
MPI_Bcast(szTmpValue, strlen(szDistributionName) + 1, MPI_CHAR, 0, fd->comm);
/* broadcasted value equal to my value? */
if (strcmp(szTmpValue, szDistributionName) != 0)
{

/* no it is not! */
/* cleanup and error handling */
ADIOI_Free(szTmpValue);
szTmpValue = NULL;
ADIOI_Free(szDistributionName);
szDistributionName = NULL;
MPIO_ERR_CREATE_CODE_INFO_NOT_SAME(myname,

"distribution_name",
error_code);

return;
}
/* every process has the same value */
/* set hint to fd->info */
MPI_Info_set(fd->info, "distribution_name", szDistributionName);
/* cleanup */
ADIOI_Free(szTmpValue);
szTmpValue = NULL;

}
else
{

/* hint is not set */
/* set default value */
strcpy(szDistributionName, "simple_stripe");
MPI_Info_set(fd->info, "distribution_name", szDistributionName);

}
/* cleanup */
ADIOI_Free(szDistributionName);

After getting the value from user_info we have to assure that each process has got the same
distribution name value. Otherwise an error is raised. If everything is alright set the hint to
fd->info and if the hint does not exist set a default value.

/src/mpi/romio/adio/ad pvfs2/ad pvfs2 open.c

Opening a file using PVFS2 system interface is done by fake an open(). I have added the parameter
MPI Info mpiInfo to this function that contains all hints set by ADIOI PVFS2 SetInfo(). To use a dis-
tribution function other than the default one is done by calling PVFS sys dist lookup("distribution
name") and passing the return value to PVFS sys create():

/* get distribution name */
char *szDistributionName = (char *)ADIOI_Malloc(sizeof(char)*(MPI_MAX_INFO_VAL+1));
memset(szDistributionName, ’\0’, MPI_MAX_INFO_VAL+1);
int iFlag;

13

MPI_Info_get(mpiInfo, "distribution_name", MPI_MAX_INFO_VAL,
szDistributionName, &iFlag);

/* initialize myDist */
PVFS_sys_dist *myDist = NULL;
if (iFlag)
{

/* lookup the distribution */
myDist = PVFS_sys_dist_lookup(szDistributionName);
if (myDist == NULL)
{

/* distribution does not exist! -> Error handling */
fprintf(stderr, "Could not find distribution %s",

szDistributionName);
o_status->error = -1;
return;

}
}
/* cleanup */
ADIOI_Free(szDistributionName);
szDistributionName = NULL;
/* open file */
ret = PVFS_sys_create(resp_getparent.basename,

resp_getparent.parent_ref, attribs,
&(pvfs2_fs->credentials), myDist, &resp_create);

PVFS_sys_dist_free(myDist);

14

4 Performance measurement of distribution
functions

In order to get an impression how fast PVFS2 is and to compare simple stripe and varstrip distribution,
the performance must be measured. The cluster, the measurement was taken on, consists of one master
and four node computers. The four nodes are I/O-servers and compute nodes, the master I/O-server,
meta data server and compute node.

4.1 Results

The plots can be found in appendix A.2. The x-axis of the plots is the size of the file part each node
writes and the y-axis is the bandwidth.

4.1.1 ext3

At first it is necessary to measure raw harddisk performance because the achieved bandwidth by this
test is the maximum performance PVFS2 can reach in the tests below.
Figure A.2 shows the write and figure A.3 the read performance. Read performance is about 50MB/s
per node and write performance about 40MB/s except of node01 whose write performance is only
about 30MB/s. To check if the results are correct bonnie++ was run one some nodes.1 Bonnie++’
output (see appendix A.1) shows the same results as we measured. Therefore we can assume that
we measured the real and not cache performance. Another argument pro is the measurement done
in figure A.1. The plot shows the read performance with cache prevention disabled and results in
50MB/s at file sizes greater than 500MB. Beginning at this point the file is too big to fit into the
cache.

4.1.2 PVFS2: simple stripe

strip size: 64KB, 8MB, 16MB

Write performance of 64KB strip size is displayed in figure A.4. All nodes are close together. The
bandwidth is about 22MB/s which is 55% of the maximum. This is not impressive but better than
the bad performance Philipp Sadleder describes in his bachelor thesis [5, chapter 7, “Messungen
und Testprogramme”]. Read performance is shown in figure A.5. It is about 20MB/s which is 40%
of the maximum. To check if the strip size is too small and produces too many server requests,
a measurement with 8MB and 16MB strip size was done (see figure A.6, A.7 and A.8, A.9). The
results are disappointing. The write performance is slightly better than using 16KB strip size but not
significantly. Read performance is the same. The bottleneck must be elsewhere.

strip size: fitted

The last plot in this series shows simple stripe with a strip size that corresponds to the file size each
node writes. Each node writes only to its own or to another harddisk. The write figure (A.10) shows

1Thanks to Hipolito Vasquez who runs the tests.

15

a bandwidth of about 30MB/s which is 75% of the maximum. Node04 has a little lesser bandwidth.
This can be explained by the fact that node04 has written to the harddisk of node01 whose harddisk
is slower than the others (see 4.1.1). The reading figure (A.11) shows that master1 is reading from its
own harddisk with full speed and the other nodes are reading from a harddisk of another node. The
bandwidth of about 40MB/s (80%) is very good.

4.1.3 PVFS2: varstrip distribution

varstrip dist distribution is configured with strip sizes that fit exactly to the size each node writes.
Furthermore it is assured that every node writes to its own harddisk. The measurement shows full
speed for every node on reading and 80% on writing. PVFS2 loses performance on writing.

4.1.4 mpi-io-test

I have run mpi-io-test with 64KB strip size. The results are shown in figure A.14 and A.15. The
bandwidth output of mpi-io-test is devided through the number of I/O-servers so that the plots are
comparable to the other. The mpi-io-test writing results are similar to ours but the reading plot
shows cache effects. At big file sizes the cache is too small and the performance is a little bit better
than in our measurement.

4.1.5 b eff io

b eff io cannot be run with PVFS2 because shared file pointers are necessary for valid test results
but PVFS2 does not support them yet.

4.2 How to do performance measurement

4.2.1 Writing

Writing is done by opening the file with MPI File Open(), setting a view with MPI File set view(),
writing data with MPI File write() and closing the file with MPI File close(). The time mea-
surements starts before MPI File write() and stops after finishing. MPI File sync() is not called
because it synchronizes all processes which falsifies the time needed by a single process. Although it is
not necessary to synchronize manually because PVFS2’s default value (that was used) is to syncronize
every 256KB. The following code snippet does the measurement:

/* allocate enaugh memory */
acBuffer = (char *)malloc(sizeof(char) * iMbytes * 1024 * 1024);
memset(acBuffer, ’A’, iMbytes * 1024 * 1024);

/* file to open */
char *sFilename = "pvfs2:/pvfs2/performance.out";
MPI_File iFileHandle;
/* setting file hints, etc. */
[...]
/* opens the file */
MPI_File_open(MPI_COMM_WORLD, sFilename,

MPI_MODE_WRONLY | MPI_MODE_CREATE,
mpiFileInfo, &iFileHandle);

/* sets the file view */

16

MPI_File_set_view(iFileHandle,
iRank * iMbytes * 1024 * 1024 * sizeof(char), MPI_BYTE,
MPI_BYTE, "native", MPI_INFO_NULL);

/* synchronizes and starts measuring time */
MPI_Barrier(MPI_COMM_WORLD);
start = MPI_Wtime();

/* writes the data */
MPI_File_write(iFileHandle, acBuffer, iMbytes * 1024 * 1024, MPI_BYTE,

MPI_STATUS_IGNORE);

/* stops measuring writing time */
stop = MPI_Wtime();
/* calculate time duration */
dWriting = stop - start;

/* synchronize: only for carefulness */
MPI_File_sync(iFileHandle);

/* close the file */
MPI_File_close(&iFileHandle);
/* and cleanup */
free(acBuffer);

4.2.2 Reading

Reading is done like writing. The only differences are that MPI File open() is called with MPI INFO NULL
instead of mpiFileInfo and MPI File read() is used instead of MPI File write().

4.2.3 Get rid off cache effects on reading

Caches can affect reading times very heavily. They make you believe to have more performance than
the system really has if they are not used. For instance reading a file from harddisk with warm caches
can be happen with bandwidthes of about 500MB/s but the harddisk can read the data only with
50MB/s in reality. The problem is that you do not know all the caches that are used in the layers
between your read() call and the disk. One cache that affects reading times supposedly at most, is
the file cache of the linux operating system. Fortunatly it is easy to get rid off it. We allocate a big
part of the system memory and write this data to a temporary file. Afterwards we delete the file.
Here is the code:

/* allocate buffer. All our nodes have 1GB RAM. 700MB is enaugh to get rid
* off the caches. To be sure you should run a test with caches enabled
* and take a size that is greater than the file size at the point the
* performance goes down in the graph. Figure \ref{xx} A.1 shows such
* a test for our cluster. */
acBuffer = (char *)malloc(sizeof(char) * 700 * 1024 * 1024);
memset(acBuffer, ’a’, 700 * 1024 * 1024);

/* open the file */
int fd;
fd = open("/tmp/emtycache", O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
if (fd == -1)

17

{
perror("");
MPI_Finalize();
return -1;

}
/* write the data */
if (write(fd, acBuffer, sizeof(char)* 1024 * 1024 * 700) == -1)
{

/* do some error handling here */
return -1;

}

/* sync() is really important! Otherwise you do not know when the operating
* system flushes the data to disk and your performance measuring will be
* influenced. */
fsync(fd);
close(fd);
/* cleanup */
if (unlink("/tmp/emtycache") == -1)
{

/* do some error handling here */
return -1;

}
free(acBuffer);

18

A Results of the measurements

A.1 Bonnie++’ output

Sequential Output Sequential Input
Chunk Size Per Char Block Rewrite Per Char Block

K/sec %CPU K/sec % CPU K/sec %CPU K/sec %CPU K/sec %CPU
master1 2G 24693 99 41559 26 22289 13 23462 80 51839 10
node01 2G 24353 99 33071 21 19236 10 26438 89 52278 9
node06 2G 24423 99 43704 28 22658 11 26486 88 52994 9
node07 2G 24300 99 44347 29 22694 11 26767 89 53240 9

A.2 Plots

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.1: Reading from own harddisk using UNIX open(), write() and close() commands with
caches enabled.

19

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.2: Writing to own harddisk using UNIX open(), write() and close() commands

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.3: Reading from own harddisk using UNIX open(), write() and close() commands

20

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.4: Writing to PVFS2, simple stripe, 64KB strip size

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.5: Reading from PVFS2, simple stripe, 64KB strip size

21

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.6: Writing to PVFS2, simple stripe, 8MB strip size

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.7: Reading from PVFS2, simple stripe, 8MB strip size

22

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.8: Writing to PVFS2, simple stripe, 16MB strip size

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.9: Reading from PVFS2, simple stripe, 16MB strip size

23

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.10: Writing to PVFS2, simple stripe, fitted strip size

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.11: Reading from PVFS2, simple stripe, fitted strip size

24

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.12: Writing to PVFS2, varstrip distribution

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Figure A.13: Reading from PVFS2, varstrip distribution

25

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

Figure A.14: mpi-io-test writing to PVFS2, simple stripe, 64KB

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

Figure A.15: mpi-io-test reading from PVFS2, simple stripe, 64KB

26

B Patches

B.1 Applying patches

To apply a patch go into the source directory of what you like to patch and call

patch -p1 < /path/file.patch

B.2 Available patches

• mpich2-1.0.1_striping_unit+distribution_name+distribution_parameter.patch
This patch contains all changes I made to MPICH2 version 1.0.1. There are the striping unit
and distribution name hints and the distribution function parameter add-on.

• pvfs2-cvs-20050408_varstrip_distribution.patch
This patch contains the varstrip distribution.

• pvfs2-cvs-20050408_print-datafile-io-server-assignment.patch
Using this patch you can print the assignment of the data files to the I/O-servers to stderr at
file creation time.

27

Bibliography

[1] MPI-2 website. http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html.

[2] MPICH2 website. http://www-unix.mcs.anl.gov/mpi/mpich2/.

[3] PVFS2 website. http://www.pvfs.org/pvfs2/.

[4] ROMIO website. http://www-unix.mcs.anl.gov/romio/.

[5] Sadleder, Philipp: Bachelor-Thesis: Änderung der Datenverteilungsfunktion im parallelen
Dateisystem PVFS2, December 2004.

28

http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
http://www-unix.mcs.anl.gov/mpi/mpich2/
http://www.pvfs.org/pvfs2/
http://www-unix.mcs.anl.gov/romio/

	Introduction
	Distribution functions in PVFS2
	Task of a distribution and data files
	Distribution functions shipped with PVFS2
	New distribution function: varstrip_dist
	How to implement a new distribution function
	Location of distribution functions in the PVFS2 source code
	Distribution function header file
	Description of methods a distribution function must implement
	Register the distribution

	Changing data file assignment to I/O-servers

	Hints in MPICH2
	Existing hints
	Using hints
	New hints
	striping_unit
	distribution_name

	Add-on for distribution function parameters
	How to implement a new hint
	Overview
	Example: Implementation of distribution_name

	Performance measurement of distribution functions
	Results
	ext3
	PVFS2: simple stripe
	PVFS2: varstrip distribution
	mpi-io-test
	b_eff_io

	How to do performance measurement
	Writing
	Reading
	Get rid off cache effects on reading

	Results of the measurements
	Bonnie++' output
	Plots

	Patches
	Applying patches
	Available patches

