
SSG (Scalable
Service Groups)

Mochi Bootcamp
September 24-26, 2019

1

Session information

Instructions for the SSG tutorial and a copy of these slides can be
found by following the “Session 3: SSG” link in the Mochi bootcamp
repository README.md

Refer back to “Session 2: Hands-on” for general details on logging onto
JLSE, installing Mochi software, and running jobs

Following the tutorial we will install SSG and attempt to run and
modify an example distributed service

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/2

Group membership background

Motivation:

Distributed systems frequently require a group membership service to reach

agreement on the set of processes comprising the system, even in the face of process

failures and growing/shrinking resource allocations

Challenges:

● How do processes learn about the initial membership of a group (i.e., bootstrapping)?

● How do processes distinguish between failed group members and members that are

temporarily unresponsive?

● How do processes agree on group membership changes in a consistent manner?

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/3

Motivating group membership use case

Distributed Object Store

Group of servers need to
maintain agreement on active
membership list to effectively
distribute objects

Connections across the group
need to be managed scalably
and reliably

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/4

Motivating group membership use case

Distributed Object Store

Servers may even want to
arrange in subgroups, similar
to how Ceph organizes into
placement groups

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/5

Motivating group membership use case

Distributed Object Store

Object store clients may also
want to “observe” the server
group view, so client requests
can be load-balanced

Clients likely only want access
to group membership snapshot
at time of request, not to
become active members

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/6

SSG: A Mochi-based group membership
service

SSG is a dynamic group membership service built

directly atop Margo that performs the following tasks:

● Bootstraps groups using a number of methods
○ MPI
○ PMIx
○ config file

● Generates unique process IDs for group

members and provides member ID -> address

mappings (views)

● Manages group membership dynamically as

processes explicitly join/leave groups or

implicitly fail

Mochi App/Service

Margo

SSG

create
group

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/7

SSG: A Mochi-based group membership
service

SSG is a dynamic group membership service built

directly atop Margo that performs the following tasks:

● Bootstraps groups using a number of methods
○ MPI
○ PMIx
○ config file

● Generates unique process IDs for group

members and provides member ID -> address

mappings (views)

● Manages group membership dynamically as

processes explicitly join/leave groups or

implicitly fail

Mochi App/Service

Margo

SSG

get
member
address

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/8

SSG: A Mochi-based group membership
service

SSG is a dynamic group membership service built

directly atop Margo that performs the following tasks:

● Bootstraps groups using a number of methods
○ MPI
○ PMIx
○ config file

● Generates unique process IDs for group

members and provides member ID -> address

mappings (views)

● Manages group membership dynamically as

processes explicitly join/leave groups or

implicitly fail

Mochi App/Service

Margo

SSG

failure
callback

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/9

SSG is not MPI

SSG is similar to MPI in that it bootstraps communication across a set of processes and uniquely

identifies each group member, but does not try to emulate MPI beyond that

● SSG does not provide any sort of collective communication algorithms across a group, just

a list of member IDs
○ No broadcast, barrier, reductions, datatype support etc.

● SSG does not even provide wrappers for sending RPCs to group members and instead just

provides mappings of member IDs to Mercury addresses

Ultimately, the implementation of collective communication algorithms is left to an additional

layer, with SSG focusing solely on membership and fault-tolerance

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/10

SSG initialization

11

SSG initialization

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/12

SSG initialization

MARGO_SERVER_MODE
required for all group members

Use MPI for bootstrapping

Corresponding call to
ssg_finalize() before shutting

down server -- *ALL* SSG calls
must be made between ssg_init

and ssg_finalize()

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/13

Creating groups

14

Creating groups using MPI communicator

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/15

Creating groups using MPI communicator
Arguments allowing definition of a

callback for any membership
changes

Corresponding call to
ssg_group_destroy() at some

point before shutting down
server

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

g_id uniquely identifies group,
used in subsequent calls for

managing this group
16

Querying group state

17

Querying group state

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/18

Querying group state

Obtain caller’s rank in the
created group. Note that SSG
member IDs are unique across
groups unlike ranks and can be
obtained with ssg_get_self_id()

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Total number of members in the
group, including self if caller is

a member (not observer)
19

Querying group state

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/20

Querying group state

Translate group member rank
into SSG member ID so we can

query its state

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Using the member’s ID, retrieve
its Mercury address so we can
subsequently send RPCs to it

21

Sharing group info

22

Sharing group info

member

non-member

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/23

Sharing group info

member

non-member

SSG also has generic group ID
serialization functions, so users can

share using MPI, PMIx, kv, etc

After loading, SSG maintains minimal
state on group until it is joined,

observed, or destroyed

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/24

Observing groups

25

Observing groups

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/26

Observing groups

Observing a group allows a client to
access membership state without
actively participating in the group

MARGO_SERVER_MODE is not
required for observing a group

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/27

Dynamically
joining/leaving groups

28

Dynamically joining/leaving groups

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/29

Dynamically joining/leaving groups
MARGO_SERVER_MODE required

to join

After joining, other group members
will maintain connection with this

process

Any member can leave at any time,
and other processes will eventually

learn of this

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/30

Detecting group
member failures

31

Detecting group member failures

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/32

Detecting group member failures

3 potential updates for a group
member: DIED (eviction by failure
detector), LEFT (explicit leave),

JOINED

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/
Provide callback for notification on

group membership changes
33

SSG failure detection

Failure detection is on all the time for all SSG groups (members only), using multiple detection

mechanisms:

● SWIM, a gossip-based group membership protocol, is enabled on all groups
○ Processes periodically probe other processes for liveness
○ Processes gossip about perceived state of other processes to reach eventual consensus
○ Numerous tunables to control detection latency, accuracy, and network load
○ We have modified SWIM to help implement dynamic leaves/joins in SSG

● (on applicable systems) PMIx event notification system
○ Register for event notifications from the RM regarding potential process or system failures

SSG failures (and explicit leaves) are currently irreversible!

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/34

[1] A. Das, I. Gupta, & A. Motivala. “SWIM: Scalable Weakly-consistent Infection-style Process
Group Membership Protocol”

SSG exercise: token ring
network

35

SSG exercise: token ring network

Using SSG rank information, create a
logical ring network topology and
forward a token along it, starting at
rank 0 (i.e., 0->1->...->N->0)

After each rank receives the token, it
shuts down

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

1

2

3

0

36

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

1

2

3

0

37

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

1

2

3

0

38

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

1

2

3

0

39

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

2

3

0

40

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

2

3

0

41

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

3

0

42

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

3

0

43

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

0

44

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/45

Example solution

struct server_data
{
 margo_instance_id mid;
 ssg_group_id_t gid;
 int self_rank;
 int group_size;
 hg_id_t token_forward_rpc_id;
};

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Server state

46

Example solution

struct server_data
{
 margo_instance_id mid;
 ssg_group_id_t gid;
 int self_rank;
 int group_size;
 hg_id_t token_forward_rpc_id;
};

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Server state

Margo and SSG group state needed
inside of RPC handlers

47

Example solution

 struct server_data serv_data;

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Initialization

48

Example solution

 struct server_data serv_data;

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Initialization

Server state structure for sharing
state with RPC handlers

Shared memory plugin for
communication

MPI for bootstrapping

49

Example solution

MERCURY_GEN_PROC(token_t,
 ((uint32_t)(token)))

static void token_forward_recv(hg_handle_t handle);
DECLARE_MARGO_RPC_HANDLER(token_forward_recv)

{
 …
 serv_data.token_forward_rpc_id = MARGO_REGISTER(serv_data.mid, "token_forward",
 token_t, void, token_forward_recv);
 margo_registered_disable_response(serv_data.mid, serv_data.token_forward_rpc_id,
 HG_TRUE);
 margo_register_data(serv_data.mid, serv_data.token_forward_rpc_id, &serv_data, NULL);
 ...
}

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

RPC registration

50

Example solution

MERCURY_GEN_PROC(token_t,
 ((uint32_t)(token)))

static void token_forward_recv(hg_handle_t handle);
DECLARE_MARGO_RPC_HANDLER(token_forward_recv)

{
 …
 serv_data.token_forward_rpc_id = MARGO_REGISTER(serv_data.mid, "token_forward",
 token_t, void, token_forward_recv);
 margo_registered_disable_response(serv_data.mid, serv_data.token_forward_rpc_id,
 HG_TRUE);
 margo_register_data(serv_data.mid, serv_data.token_forward_rpc_id, &serv_data, NULL);
 ...
}

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

RPC registration Simple token type and serialization
macro

Forward declare token receive RPC
handlers

Register RPC, providing input/output
types and handler name

Enable 1-way RPCs and register our
server_data structure with the

handler
51

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Group creation

52

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Group creation
MPI group creation function using

MPI_COMM_WORLD

Retrieve group rank and size using
SSG, this is needed to implement

token ring

53

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Token forwarding kickoff

54

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Token forwarding kickoff
Forward declare function for

forwarding the token to the next rank

Rank 0 initiates the token forwarding,

All ranks wait for a finalize signal
before exiting

55

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Token forwarding

56

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Token forwarding
Use self_rank, group_size, and

module to determine target

Convert rank to SSG member ID

Use SSG to determine Mercury
address of target

57

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Token forwarding

58

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Token forwarding

Set token value

Create token handle and forward to
target, then destroy the handle

59

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Token receive handler

60

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Token receive handler
Use Mercury handle to retrieve the
server data structure we registered

with this handler

Get the input token and print to
confirm value -- don’t forget to free

your inputs or outputs!

Use MARGO RPC handler definition
macro to setup proper wrappers

61

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Token receive handler

62

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Token receive handler

Non-zero ranks continue to forward
the token, rank 0 stops

Signal finalize so this rank can shut
down

63

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

1

0

3

2

Now, extend the example to have
servers remain running after
receiving the token, with rank 0
sending a shutdown signal through
the ring in reverse order (i.e., rank 3
shuts down first, rank 0 shuts down
last

64

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

1

0

3

2

X

65

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

1

0 2

X

66

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

1

0

X

67

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

0

X

68

SSG exercise: token ring network

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/69

Example solution

struct server_data
{
 margo_instance_id mid;
 ssg_group_id_t gid;
 int self_rank;
 int group_size;
 hg_id_t token_forward_rpc_id;
 hg_id_t shutdown_forward_rpc_id;
};

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Server state

70

Example solution

struct server_data
{
 margo_instance_id mid;
 ssg_group_id_t gid;
 int self_rank;
 int group_size;
 hg_id_t token_forward_rpc_id;
 hg_id_t shutdown_forward_rpc_id;
};

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Server state

Add shutdown forward RPC ID

71

Example solution

static void shutdown_forward_recv(hg_handle_t handle);
DECLARE_MARGO_RPC_HANDLER(shutdown_forward_recv)

{
 …
 serv_data.shutdown_forward_rpc_id = MARGO_REGISTER(serv_data.mid, "shutdown_forward",
 void, void, shutdown_forward_recv);
 margo_registered_disable_response(serv_data.mid, serv_data.shutdown_forward_rpc_id,
 HG_TRUE);
 margo_register_data(serv_data.mid, serv_data.shutdown_forward_rpc_id, &serv_data, NULL);
 ...
}

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

RPC registration

72

Example solution

static void shutdown_forward_recv(hg_handle_t handle);
DECLARE_MARGO_RPC_HANDLER(shutdown_forward_recv)

{
 …
 serv_data.shutdown_forward_rpc_id = MARGO_REGISTER(serv_data.mid, "shutdown_forward",
 void, void, shutdown_forward_recv);
 margo_registered_disable_response(serv_data.mid, serv_data.shutdown_forward_rpc_id,
 HG_TRUE);
 margo_register_data(serv_data.mid, serv_data.shutdown_forward_rpc_id, &serv_data, NULL);
 ...
}

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

RPC registration
Forward declare shutdown receive

RPC handlers

Register RPC, note that there is no
input or output type for shutdown

Enable 1-way RPCs and register our
server_data structure with the

handler

73

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Token receive handler

74

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Token receive handler

Modify token receive logic so that
rank 0 forwards a shutdown request

on receipt

75

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Shutdown forwarding

76

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Shutdown forwarding
Use self_rank, group_size, and

module to determine target. Note we
are going in reverse rank order

Convert rank to SSG member ID

Use SSG to determine Mercury
address of target

77

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Shutdown forwarding

78

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Shutdown forwarding

Create shutdown handle and forward
to target, then destroy the handle.
Note NULL input to forward RPC

79

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Shutdown receive handler

80

Example solution

https://xgitlab.cels.anl.gov/sds/mochi-boot-camp/

Shutdown receive handler Use Mercury handle to retrieve the
server data structure we registered

with this handler

Use MARGO RPC handler definition
macro to setup proper wrappers

Non-zero ranks continue to forward
the shutdown, rank 0 stops

Signal finalize so this rank can shut
down

81

