
Note on Representation of Spectral Element Meshes

The Spectral Element Method (SEM) is a high-order method, using a
polynomial Legendre interpolation basis with Gauss-Lobatto quadrature
points, in contrast to the Lagrange basis used in (linear) finite elements
[DEV02]. SEM obtains exponential convergence with decreasing mesh
characteristic sizes, and codes implementing this method typically have
high floating-point intensity, making the method highly efficient on
modern CPUs. Most Nth-order SEM codes require tensor product cuboid
(quad/hex) meshes, with each d-dimensional element containing (N+1)d

degrees of freedom (DOFs). There are various methods for representing
SEM meshes and solution fields on them; this document discusses these
methods and the tradeoffs between them. The mesh parts of this
discussion are given in terms of the iMesh mesh interface and its
implementation by the MOAB mesh library [MOA12].

The figure above shows a two-dimensional 3rd-order SEM mesh consisting of four quadrilaterals. For this
mesh, each quadrilateral has (N+1)^2=16 DOFs, with corner and edge degrees of freedom shared between
neighboring quadrilaterals.

Representations
There are various representations of this mesh in a mesh database like MOAB, depending on how DOFs are
related to mesh entities and tags on those entities. We mention several possible representations:

1) Corner vertices, element-based DOFs: Each quadrilateral is defined by four vertices, ordered in CCW
order typical of FE meshes. DOFs are stored as tags on quadrilaterals, with size (N+1)^2 values,
ordered lexicographically (i.e. as a 2D array tag(i,j) with i varying faster than j.) In the figure above, the
connectivity for face 1 would be (1, 4, 16, 13), and DOFs would be ordered (1..16). Note that in this
representation, tag values for DOFs shared by neighboring elements must be set multiple times, since
there are as many copies of these DOFs as elements sharing them.

2) High-order FE-like elements: Each DOF is represented by a mesh vertex. Quadrilaterals each have
(N+1)^2 vertices, ordered as they would be for high-order finite elements (corner vertices first, then
mid-edge and mid-face elements; see [TAU10]). Mid -face, -edge, and -region vertices for a given
edge/face/region would be ordered lexicographically, according to positive direction in a corresponding
reference element. In the figure above, the connectivity array for face 1 would be (1, 4, 16, 13, 2, 3, 8,
12, 14, 15, 5, 9, 6, 7, 10, 11). DOF values are stored as tags on vertices. Since DOFs are uniquely
associated with vertices and vertices are shared by neighboring elements, tag values only need to be set
once. Full vertex-quadrilateral adjacencies are available, for all vertices.

3) Linear FE-like elements, one vertex per DOF, array with DOF vertices: Each quadrilateral is defined by
four (corner) vertices, with additional vertices representing mid-edge and mid-face DOFs. An additional
“DOF array” tag is assigned to each quadrilateral, storing the array of vertices representing the (N+1)^2
DOFs for the quadrilateral, ordered lexicographically. For the figure above, the connectivity array for
face 1 would be (1, 4, 16, 13), and the DOF array would be (1..16), assuming that vertex handles are
integers as shown in the figure. DOF values are stored as tags on vertices, and lexicographically-ordered
arrays of DOFs can be retrieved using the DOF array tag as input to the tag_get_data function in
MOAB. Adjacency functions would only be meaningful for corner vertices, but tag values would only
need to be set once per DOF.

4) High-order FE-like elements, array with DOF vertices: This is a combination of options 2 and 3. The
advantage would be full vertex-quad adjacency support and direct availability of lexicographically-
ordered vertex arrays, at the expense of more memory.

 f1

1 2 3 4
5 6 7 8

9 10 11 12
13 14 15 16

5) Convert to linear mesh: Since a spectral element is a cuboid with higher-order vertices, it can always be
converted to N^2 linear cuboids using the high-order vertices as corners of the finer quads/hexes. This
is how readers in ParaView and VisIt typically import spectral meshes (CAM-SE also exports
connectivity in this form).

As a convenience for applications, functions could also be provided for important tasks, like assembling the
vertex handles for an entity in lexographic order (useful for option 2 above), and getting an array of tag values in
lexicographic order (for option 3 above).

Tradeoffs
There are various competing tradeoffs in the various representation types. These include:

• Adjacencies: being able to retrieve the element(s) using a given (corner or higher-order) vertex.
• Connectivity list: being able to retrieve the connectivity of a given element, consisting of all (corner +

higher-order) vertices in the element, usually in lexicographical order. This is closely linked with being
able to access the connectivity list as a const*, i.e. using the list straight from memory without needing
to copy it.

• Memory vs. time: There is a memory vs. execution time tradeoff between duplicating interface vertex
solution/tag variables in neighboring elements (more memory but more time-efficient and allows direct
access to tag storage by applications) versus using vertex-based tags (less memory but requires assembly
of variables into lexicographically-ordered arrays, and prevents direct access from applications).

The lower-memory option (storing variables on vertices and assembling into lexicographically-ordered arrays for
application use) usually ends up costing more in memory anyway, since applications must allocate their own
storage for these arrays. On the other hand, certain applications will always choose to do that, instead of sharing
storage with MOAB for these variables. In the case where applications do share memory with MOAB, other
tools would need to interpret the lexicographically-ordered field arrays specially, instead of simply treating the
vertex tags as a point-based field.

MOAB Representation
In choosing the right MOAB representation for spectral meshes, we are trying to balance a) minimal memory
usage, b) access to properly-ordered and -aligned tag storage, and c) maximal compatibility with tools likely to
use MOAB. The solution we propose is to use a representation most like option 2) above, with a few optional
behaviors based on application requirements.

In brief, we propose to represent elements using the linear, FE-ordered connectivity list (containing only corner
vertices from the spectral element), with field variables written to either vertices, lexicographically-ordered
arrays on elements, or both, and with a lexicographically-ordered array of all (corner+higher-order) vertices
stored on elements. In the either/or case, the choice will be evident from the tag size and the entities on which
the tag is set. In the both case, the tag name will have a “-LEX” suffix for the element tags, and the size of the
element tag will be (N+1)^2 times that of the vertex-based tag. Finally, the file set containing the spectral
elements (or the root set, if no file set was input to the read) will contain a “SPECTRAL_ORDER” tag whose
value is N.

References

[DEV02] M. O. Deville, P. F. Fischer, and E. H. Mund, High-order methods for incompressible fluid
flow. Cambridge, UK; New York: Cambridge University Press, 2002.
[MOA12] T. J. Tautges, “MOAB Wiki.” [Online]. Available:
http://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB. [Accessed: 30-Oct-2012].
[TAU10] T. J. Tautges, “Canonical numbering systems for finite-element codes,” International Journal
for Numerical Methods in Biomedical Engineering, vol. 26, no. 12, pp. 1559–1572, 2010.

	Note on Representation of Spectral Element Meshes
	Representations
	Tradeoffs
	MOAB Representation
	References

