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1. INTRODUCTION

Developing new simulation software for problems describggartial differential equa-
tions has become a relatively common but nonethelessattitirlous task. Much of the
effort required to create a new simulation code goes inteldg@ing infrastructure for
mesh and geometry data manipulation, equation discrietizatdaptive refinement, design
optimization, and so forth. Because this infrastructumisimon to many simulations, re-
usable software for these tasks could be shared across nmamyaon codes and could
significantly reduce both the time, effort, and expertisguieed to develop and maintain
new simulation codes.

Currently, libraries are the most common mechanism for software re-use in sidenti
computing, including highly-successful examples for nting linear algebra [Balay et al.
1997; Balay et al. 2004; EISPACK 2004; LAPACK 2004; LINPACR®] and parallel
partitioning and load balancing [Devine et al. 2002; Bomaiale2007; ParMETIS 2008;
Walshaw and Cross 2007; Jostle 2002]. A key drawback in U#irayies as a mechanism
for software re-use is the difficulty in modifying an applica already using one library so
that it can use another. At a minimum, all symbol names fromlimary must be changed
to names from the other. However, the difficulties reallyyolnégin there. Libraries of
similar purpose often package functionality in very diffiet ways. Consequently, data
structures shared between application and library and teecontrol flow between appli-
cation and library may need to be totally re-designed. Taexto re-design an application
— or portions of it — so that it can re-use some other piece fifwoe is often termed an
impedance mismatciThe greater the impedance mismatch, the more effort ignextjto
resolve it. This time-consuming re-design process can lignéfisant diversion from the
central scientific investigation, so many application egskers are reluctant to undertake
it. As a result, improvements in algorithms often take yeansigrate from the research
community into application simulations.

Componentsepresent a higher level of abstraction than libraries.efsslly, a com-
ponent defines bothgpecificatiorfor an application programming interface (API) and an
abstractata modeHefining the semantics of the data that is passed throughtedsce.
Returning to the familiar example of linear algebra, a nuoa¢tdinear algebra compo-
nent would define a standard interface for operations sudoggroducts, matrix-vector
multiplication, and linear system solution. Its abstraatadmodel would include objects
such as vectors and matrices. A key advantage to composehtgiany application using
a component canyithout modificationuse another implementation of the same compo-
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nent API, because all implementations have substantiglijvalent functionality. In other
words, software re-use can be achieved with no additiofiaitef

This paper describes a meshing component intended to suppelevel mesh access
and manipulation. In addition, this component is desigreedupport the requirements
of solver applications, including the ability to define mesliiosets and to attach arbitrary
user data to mesh entities. Finally, our mesh componentasidted to be both language
and data structure independent. In summary, the mesh canpae present is intended
to support low-level interaction between applicationsgoaons — both meshing and so-
lution applications — and external mesh databases regardlethe data structures and
programming language used by each.

The most prominent example of prior research in definingfates for meshing is the
Unstructured Grid Consortium (UGC), a working group of thdtican Institute for Aero-
nautics and Astronautics’s Meshing, Visualization, andn@ating Environments Techni-
cal Committee [UGC Consortium 2005]. The first release of W&C interface [UGC
Consortium 2002] was aimed at high level mesh operatiordyding mesh generation
and quality assessment. Recognizing a need for additionhlaver-level functionality,
the UGC has developed an interface for defining generic tagélservices, as well as a
low-level query and modification interface for mesh datalsasmed exclusively at mesh-
ing operations [Steinbrenner et al. 2005]; results of sugtrigs in the UGC interface are
explicitly expressed as integer indices into data arrayth, @bvious implications for how
implementations of that interface must store data. Thelewe! UGC interface is similar
in scope to our API, although we have deliberately been menel in providing support
for functionality required by solvers and in emphasizinggdstructure neutrality.

1.1 A Simple Use Case for a Mesh Component

As an example of how a typical scientific computing applmatnight benefit from using
a mesh component, let us consider a finite element solverqW&Sor some partial dif-
ferential equation, and how this application might evolverdime?! Let us assume that
when first developed, FESolve is a simple finite element spligng linear elements. At
run time, FESolve loads a mesh from a file and does some poegsimg of the mesh to
compute geometric quantities (such as integration pomdsixgeights) and perhaps to com-
pute some mesh topological relationships that weren'ténfille. Then, FESolve iterates
over the elements in the mesh, computing the residual anstiffreess matrix for each,
and assembling these into a global linear system. Thismyisteolved, and the solution
is updated at every node. This iteration process may be tegheaveral times, e.g., for
time-dependent or non-linear problems.

After FESolve has been in use for some time, its developeigd¢hat mesh adaptation
is required to improve solution accuracy and/or efficieith current approaches to de-
veloping mesh infrastructure software, they have two fumefatally different choices. One
choice is to select some existing mesh adaptation codeswtiity some other researcher(s)
and integrate it with FESolve by resolving whatever impedgamismatch may exist. In
many cases, this will require replacing the entire meshbdeta and infrastructure in FE-
Solve with new software infrastructure from the mesh adaptaode, including updating
FESolve to access data in a totally different way. The otheiae is to ignore all exist-

lwhile different applications will surely have different@irements for interacting with unstructured mesh data,
many, if not most, applications will follow roughly this samoutline.
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ing mesh adaptation implementations and develop, fromdtran implementation that is
specifically tailored to fit into FESolve’s current architee. Of course, there are hybrid
solutions which combine these two approaches.

A standard mesh component provides a third, less painfultevayake this transition.
Let us assume that there exists a stand-alone service thétles key mesh adaptation
operations such as element division and coarsening. A nwsipanent API then serves
as the intermediary between the provider of mesh data @rctse, FESolve) and users of
mesh data (in this case, the mesh adaptation service). Thep&FEifies a set of fundamen-
tal mesh query and manipulation operations. In essencesh coenponent API proclaims
“If you are going to ask me about a mesh, these are the questmncan ask and this is
how you ask them.” or “If you are going to operate on a mestsdlage the operations you
can perform and this how you perform them.” The componerita dnodel specifies how
mesh data is encapsulated.

When using a standard mesh component AP| and an adaptatiécesthat is compliant
with that API, the developers of FESolve are now requireg tmprovide implementations
of the API functions used by the adaptation code. That ibgfrhesh adaptation code uses
only a handful of the queries and operations in the mesh caemAPI, then only this
handful of functions needs to be added to FESolve. Once deESplve’s data, in its
own internal data structures, can be used directly by thehmadaptation code without
further integration. As a bonus, in implementing part of thesh component API, the
FESolve development team will have done some of the workiredjio integrate other
useful advanced capabilities available through the mesipooent API.

1.2 The ITAPS Mesh Component

In this paper, we will describe a newly developed componetgnided to provide sup-
port for the mesh access and manipulation requirementsagafipal, large-scale scientific
computing applications. This component, developed as qfaat larger project by the

Interoperable Tools for Advanced Petascale SimulatioARIS) center to develop inter-
operable software tools for meshes, domain geometry, datiaorepresentation [Chand
et al. 2008], is called iMesh. Note the words “support folie iMesh component is not
intended to be a general interface to all possible meshiegabipns, but rather, to define
the operations required at a mesh database level so thatdvigloperations — including

mesh generation, mesh improvement, mesh adaptation|gdguaititioning, load balanc-

ing, and design optimization — can be implementedevicegshat store and manipulate
mesh data by using the iMesh component API and mesh databagenientations sup-

porting it. To be genuinely useful to real applications aedl mpplication developers, the
component must be

—general purpose: all mesh operations must be implemenkasied on the iMesh com-
ponent API,

—efficient: data access using the iMesh component API aniohfiiementations must not
come at too high a cost in overhead,

—flexible: different applications may want to use differapproaches for the same task,
and

—interoperable: implementations of the component API nlbgstruly interchangeable,
and services designed to use the interface should work aimgeapid play basis, regard-
less of data structures and programming language.
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Section 2 describes the design principles we followed toerthat the iMesh component
met these goals. We first defined a data model (see Sectiore8jing operations require
information about mesh entities (like vertices, triangudéces, and hexahedral regions),
collections of entities, and meta-data associated withhreasities. Using that data model,
we then defined an API that would support general meshing ash+related solver op-
erations (see Section 4). In addition to defining the iMeshponent API, we have also
developed implementations of it based on existing mestbdats and used these imple-
mentations for various meshing and PDE solution tasks;rategamples will be given
in Section 5. The paper will conclude with discussion of ¢esslearned from developing
this component, of the current status of software usingftesh component API, and of
future prospects for extension and application of the iMasihponent.

2. DESIGN PRINCIPLES

In Section 1.2, we summarized our goals for the iMesh compbABI. As design of the
component API continued, we found that several principéesired frequently in guiding
our design decisions as we worked towards those goals. figadlgj we found that we
made decisions to produce an interface that was:

Complete..Clearly, a minimal requirement is that all required meshrapiens must be
possible, either intrinsically through the iMesh compar®hl or by building on it.

Run-time efficiency.For the iMesh API to be useful for applications it must haws lo
overhead. Specifically, the interface must be designedsd@thiMesh implementation can
provide data access and manipulation nearly as rapidly tageraccess to the same mesh
database. An example of the application of this principl¢hie iMesh interface are the
availability of both single-entity and array-of-entitiascess to mesh data, either of which
may be more efficient depending on the circumstances.

Ease of use.To lower the barrier for adoption of the interface, it mustblatively easy
for programmers to use. This implies the interface must lagively compact but also pro-
vide direct access to commonly used constructs, even axfiemee of additional functions
in the interface. For example, we recognize that certaiegygf metadata — specifically,
double, integer, and entity handle metadata — will be vergroon and more easily han-
dled both by iMesh implementations and applications if ¢hare specific functions for
these types. However, to preserve flexibility in such caseslso we also provide general
access mechanisms; for the metadata example, genericdigsdribed using byte strings.

Flexibility.. We recognize that different applications may choose toesgpthe same
semantic content in different ways. Where feasible, thesiViaterface supports this. For
example, one application may choose to represent boundaditon data by metadata
attached to particular mesh entities; another may reptésersame information by col-
lecting entities with the same boundary condition into a #et another example, some
applications may choose to access data entity by entityevdiiiers may prefer array ac-
cess to data.

Extensibility.. We have designed the interface to allow extensions to thddual mesh
access functionality that the interface defines. For exangptecent addition to the iMesh
interface is support for curved mesh entities. The suppead added to the iMesh inter-
face without requiring changes to functions already in therface. As a second example,
ongoing work for a parallel extension to the iMesh interfemerages serial iMesh func-
tionality for parallel usage.
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Simplified applications programmingOne obvious way to simplify applications pro-
gramming is by making the iMesh interface as lightweight@ssible. In addition, wher-
ever possible, the iMesh interface is designed to placecdifftasks under the control of
the implementation rather than the application. A primenepde of this is in the area of
memory management. An application, when requesting ay afrdata, need not know
in advance the size of the array. Instead, the applicatiarpeas in an uninitialized array
and the implementation automatically allocates the apjatspamount of memory for that
array.

Interoperability.. In the long-term, success of the iMesh component will degemiclow
well the componenttruly supports interoperability. Tisistie key to being able to leverage
the effort in development of both implementations and sewias well as conversion of
applications to use the interface. Interoperability, imfurequires not only the use of
a standard interface, but also data structure and progragnlaguage neutrality. Also,
interoperability can be enhanced by eliminating grey aregre component behavior is
implementation-dependent.

3. DATA MODEL

In the iMesh data model, all mesh primitives — vertices (Gflges (1D), faces (2D), and
regions (3D) — are referred to @&ntities Mesh entities are collected together to form
entity sets All topological and geometric mesh datas well as all other entity sets, are
contained in aoot entity set To allow multiple meshes to be operated on independently,
the iMesh data model supports the notion ofiastance which is analogous to a C++
object (in this analogy, the iMesh interface definition pdely, a C++ class). In many
implementations, the instance be a database or collecfioartainers storing all of the
mesh entities, with other entity sets containing handlethiese entities rather than copies
of all entity data. Any iMesh data object — an entity or anyityrget including the root
set — can have one or motagsassociated with it, so that arbitrary data can be attached
to the object. To preserve data structure neutrality, alshidata objects are identified by
opaque handles.

3.1 Mesh Entities

All the primitive components of a mesh are defined by the iMésta model agntities
iMesh entities are distinguished by their entity type (efifesly, their topological dimen-
sion) and entity topology; each topology has a unique etyiig associated with it. Exam-
ples of entities include vertices, edges, triangular ordgileteral faces in 2D or 3D, and
tetrahedral or hexahedral regions in 3D; a complete catzlegtities supported by iMesh
is shown in Figure 1. Faces and regions have no interior hbligher-dimensional entities
are defined by lower-dimensional entities using a canooicigring.

Adjacencies describe how mesh entities connect to eaclh dtbean entity of dimen-
siond, a first-order adjacency request returns all of the meskientf dimensiorg which
are on the closure of the entity for downward adjacernty (q), or for which the entity
is part of the closure for upward adjacendy< g), as shown in Figure 2(a) and (b). For
a particular implementation, not all first-order adjacescire necessarily available. For
instance, in a classic finite element element-node convigycttorage, requests for faces or

2Geometric mesh daia geometric data required to define shapes of mesh enfitiés is distinct fromgeometric
model datawhich defines the shape of the problem domain.
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Fig. 1. Entities supported by the iMesh component. Canbeitge ordering is indicated in the sketch; canonical
face ordering is given in the table. Polygons and polyheatrinsically have no canonical ordering.

edges adjacent to an entity may return nothing, becausenlementation has no stored
data to return. For first-order adjacencies that are availebbthe implementation, the
implementation may store the adjacency information diyeot compute adjacencies by
either a local traversal of the entity’s neighborhood or lpbgl traversal of the entity set.
Each iMesh implementation must provide information abbetavailability and relative

cost of first-order adjacency queries.

For an entity of dimensiod, second-order adjacencies describe all of the mesh antitie
of dimensiong that share any adjacent entities of dimendiprvhered # b andb # g.
Second-order adjacencies can be derived from first-ordacawcies. Note that, in the
iMesh data model, requests such as all vertices that ardlngtig to a given vertex are
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(a) Downward adjacency; edges (b) Upward adjacency: edges ad- (c) Second adjacency; red edges
adjacent to a face, vertices adja- jacent to a vertex, faces adjacent are adjacent to vertices adjacent to
cent to an edge. to an edge. the red face.

Fig. 2. Examples of adjacency relationships between metitiesn

requests for second-order adjacencies. Figure 2(c) bigisliall edges adjacent to vertices
adjacent to the shaded face.

3.2 Entity Sets

The iMesh data model allows arbitrary groupings of entjtizdledentity setsEach entity
set may be a true set (in the set theoretic sense) or it may jpessily non-unique) or-
dered list of entities; in the latter case, entities aréeeéd in the order in which they were
added to the entity set. An entity set may or may not be a sirophnected computational
mesh; entity sets thatre simple meshes have obvious application in multiblock anttimu
grid contexts, for instance. Entity sets (other than the set) are populated by addition
or removal of entities from the set. In addition, set Boolegerations — subtraction,
intersection, and union — on entity sets are also supported.

Two primary relationships among entity sets are suppoFesit, entity sets may contain
one or more entity sets (by definition, all entity sets beltmthe root set). An entity set
contained in another may be either a subset or an elemert ifetire set theoretic sense)
of that entity set. The choice between these two interpogtsis left to the application;
the iMesh component does not impose either interpretatsat.contents can be queried
recursively or non-recursively; in the former case, if gnsiet A is contained in entity set
B, a request for the contents of B will include the entitiesAirfand the entities in sets
contained in A). Second, parent/child relationships betwentity sets are used to repre-
sent logical relationships between sets, including muttignd adaptive mesh sequences.
These logical relationships naturally form a directed céicygraph.

Examples of entity sets include the ordered list of vertloegnding a geometric face,
the set of all mesh faces that lie on that geometric face, ¢hefsregions assigned to
a single processor by mesh partitioning, and the set of aifienin a given level of a
multigrid mesh sequence.

To be useful to applications, information in the root setioe or more of its constituent
entity sets is assumed to be a valid computational mesh,@earof which include:

—A non-overlapping, connected set of iMesh entities; foaraple, the structured and
unstructured meshes commonly used in finite element simakagimple mesh
—Overlapping grids in which a collection of simple meshesiaged to represent some por-
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tion of the computational domain, including chimera, nhitick, and multigrid meshes
(multiple mesh The interfaces presented here handle these mesh typegenesal
way; higher-level services may be added later to suppodifpéunctionalities needed
by these meshes. In this case, each of the simple mesheslid eoraputational mesh,
stored as an entity set.

—Adaptive meshes in which all entities in a sequence of rdfifgmple or multiple)
meshes are retained in the root set. The most highly refinagtation level typically
comprises a simple or multiple mesh. Typically, differeavdls of mesh adaptation will
be represented by different entity sets, with many of thitiesshared by multiple entity
sets.

—Smooth particle hydrodynamic (SPH) meshes, which cow$iat collection of iMesh
vertices with no connectivity or adjacency information.

3.3 Tags

Tags are used as containers for user-defined data that céatiecal to iMesh entities and
entity sets. Different values of a particular tag can be @ased with different entities

or sets; for instance, a boundary condition tag will havéedint values for an inflow

boundary than for a no-slip wall, and no value at all for faicethe interior of the mesh.

In the general case, iMesh tags do not have a predefined typallaw the user to attach
arbitrary data to mesh entities; this data is stored andkvet by implementations as a
bit pattern. To improve performance and ease of use, we sufipee specialized tag

types: integers, doubles, and handles. These typed tabeemaiMesh implementation
to correctly save and restore tag data when a mesh is writtaffile.

4. INTERFACE FUNCTIONALITY

The iMesh interface supports a variety of commonly neededtfanalities for mesh and
entity query, mesh modification, entity set operations, @gs. All data passed through
the interface is in the form of opaque handles to objects défin the data model. In this
section we describe the functionality available throughiMesh interfacé. For a simple
usage example, in both C and Fortran, see Appendix A.

4.1 Global Queries

Global query functions can be categorized into two groupsdatabase functionghat
manipulate the properties of the database as a whole as&t guery functionghat query
the contents of entity sets as a whole; these functionsmequientity set argument, which
may be the root set. These functions are summarized in Table |

Database functions include functions to create and destesh instances; note that the
create function only sets up data structures for the mesarios, which must be filled by
reading data from a file or by creating a mesh entity by enfibe load and save functions
read and write mesh information from files; file format anddveaite options are imple-
mentation dependent. As mesh data is loaded, entities@®edsn the root set, and can
optionally be placed into a subsidiary entity set as welledl implementations must be
able to provide coordinate information in both blocked (xxxy...zzz...) and interleaved

SNote that these descriptions do not include detailed symthich can be found in the interface user guide [Chand
et al. 2007a; 2007b]. Also, note that all function names @ittierface are prepended by iMesh_; this prefix is
omitted in the tables in this paper for compactness.
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Table I. Functions for Global Queries. (All function names prepended with iMesh_.)

Function | Description |

newMesh Creates a new, empty mesh instance

dtor Destroys a mesh instance

load Loads mesh data from file into entity set

save Saves data from entity set to file

getRootSet Returns handle for the root set

getGeometricDim Returns geometric dimension of mesh

getDfltStorage Tells whether implementation prefers blocked or interésheoordinate data

getAdjTable Returns table indicating availability and cost of entityea@ncy data

areEHValid Returns true if EH remain unchanged since last user-reggisatus reset

getNumOfType Returns number of entities of type in ES

getNumOfTopo Returns number of entities of topo in ES

getAllVixCoords Returns coords of all vertices in the set and all verticesherctosure of higher-
dimensional entities in the set; storage order can be ysmified

getEntities Returns all entities in ES of the given type and topology

getAdjEntities For all entities of given type and topology in ES, return adja entities of
adj_type

getAllVixCoords For all vertices, return coords; storage order can be yssgified.

getVitxArrCoords For all input vertex handles, return coords; storage ordare user-specified.

getVtxCoordindex For all entities of given type and topology, find adjacenites of adj_Type,
and return the coordinate indices for their vertices. Veoiglering matches that
in getAllVixCoords.

(xyzxyzxyz...) formats; an application can query the inmpdmtation to determine the im-
plementation’s preferred storage order. Also, implemtama must provide information
about the availability and relative cost — constant timeklop, local mesh traversal, geo-
metric search of the entire mesh, or exhaustive search @fitiee mesh — of computing
adjacencies between entities of different types. Finalgh mesh instance must provide a
handle for the root set.

Set query functions allow an application to retrieve infation about entities in a set.
The entity set may be the root set, which will return selectaatents of the entire database,
or may be any subsidiary entity set. For example, functicis & request the number of
mesh entities of a given type or topology; the types and tmgiek are defined as enu-
merations. Applications can request handles for all estitif a given type or topology or
handles for entities of a given type adjacent to all entitiess given type or topology. Also,
vertex coordinates are available in either blocked or leéeed order. Coordinate requests
can be made for all vertices or for the vertex handles retiioyean adjacency call. Finally,
indices into the global vertex coordinate array can be abthfor both entity and adjacent
entity requests.

4.2 Entity- and Array-Based Query

The global queries described in the previous section are tasetrieve information about
all entities in an entity set. While this is certainly a pieat alternative for some types of
problems and for small problem size, larger problems oasias involving mesh modifi-
cation require access to single entities or to blocks ofiestiThe iMesh interface supports
traversal and query functions for single entities and focks of entities; the query func-
tions supported are entity type and topology, vertex coatais, and entity adjacencies.
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Table Il.  Functions for Single Entity Queries. (All funatimames are prepended with iMesh_.)

| Function | Description |
initEntlter Create an iterator to traverse entities of type and topo inr&8rn true if any
entities exist
getNextEntlter Return true and a handle to next entity if there is one; falkeraise
resetEntlter Reset iterator to restart traverse from the first entity
endEntlter Destroy iterator
getType Return type of entity
getTopo Return topology of entity
getVtxCoord Return coordinates of a vertex
getEntAdj Return entities of given type adjacent to EH
getEnt2ndAdj Return entities of given type adjacent to entities of a sd¢ppe adjacent to EH
Table Ill. Functions for Block Entity Queries. (All functionames are prepended with iMesh_.)
| Function | Description |
initEntArrliter Create a block iterator to traverse entities of type and tof€S
getNextEntArriter Return true and a block of handles if there are any; falseraibe
resetEntArriter Reset block iterator to restart traverse from the first gntit
endEntArriter Destroy block iterator
getEntArrType Return type of each entity
getEntArrTopo Return topology of each entity
getEntArrAdj Return entities of type adjacent to each EH
getEntArr2ndAd] Return entities of given type adjacent to entities of a sddgpe adjacent to
each EH

Table IV. Functions for Single Entity Mesh Modification. {(Alinction names are prepended with iMesh_.)

| Function | Description |
createVix Create vertex at given location
setVtxCoords Changes coordinates of existing vertex
createEnt Create entity of given topology from lower-dimensionaliges; return entity
handle and creation status
deleteEnt Delete EH from the mesh

Blocks of data are passed through the interface using aofagstity handles. Tables Il
and Il summarize these functions.

4.3 Mesh Modification

The iMesh interface supports mesh modification by proviginginimal set of operators
for low-level modification; both single entity (see Table)l&nd block versions (see Ta-
ble V) of these operators are provided. High-level functidy, including mesh generation,
guality assessment, and validity checking, can in prirdi@ built from these operators, al-
though in practice such functionality is more likely to beyided using intermediate-level
services that perform complete unit operations, inclugigngex insertion and deletion with
topology updates, edge and face swapping, and vertex singoth

Geometry modification is achieved through functions thaingfe vertex locations. Ver-
tex locations are set at creation, and can be changed aseégfor instance, by mesh
smoothing or other vertex movement algorithms.
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Table V. Functions for Block Mesh Modification. (All functimames are prepended with iMesh_.)

| Function | Description |
createVixArr Create vertices at given location
setVtxArrCoords Changes coordinates of existing vertices
createEntArr Create entities of given topology from lower-dimensionatitées; return entity
handle and status
deleteEntArr Delete each EH from the mesh
Lagrange

Mixed—order
Bezier

Fig. 3. Examples of high-order, curved mesh entities

Topology modification is achieved through the creation aekgtibn of mesh entities.
Creation of higher-dimensional entities requires spedtific, in canonical order, of an
appropriate collection of lower-dimensional entities.r stance, a tetrahedron can be
created using four vertices, six edges or four faces, bufroat combinations of these.
Upon creation, adjacency information properly connectimg new entity to its compo-
nents is set up by the implementation. Some implementatitmsallow the creation of
duplicate entities (for example, two edges connecting émeestwo vertices), while others
will respond to such a creation request by returning a cogh@already-existing entity.

Deletion of existing entities must always be done from hgjhe lowest dimension, be-
cause the iMesh interface forbids the deletion of an entitly existing upward adjacencies
(for instance, an edge that is still in use by one or more facesgions).

4.4 Entity Shape

Information about the shape of mesh entities is essentialfjpport of high order accurate
solution techniques. Complicating matters is the fact thptesentations of curved mesh
entities can be formulated in more than one way, includingrpolation, approximation,
analytic forms, and CAD data. In each of these formulatidwsyever, point-wise geo-
metric information is typically used to build up the requidgigher-order shapes of mesh
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Table VI. Functions for High-Order Entity Shape. (All fuiart names are prepended with iMesh_.)

| Function | Description |
hasMeshShapes Determine with the mesh contains high order shapes of givepestype
createMeshShapes Create higher order shapes with the specified shape typerdedfor the mesh
hasEntShape Determine with an entity has high order shapes of given styqee
getEntShapeOrder Get the order of the higher order mesh entity shape
createEntShapes Create high order shapes for a single entity
deleteEntShapes Delete high order nodes for an entity
getEntShapes Return high order nodes for an entity
setVixParam Set parametric coordinates of high order node
getVixParam Get parametric coordinates of high order node
setNodeToEnt Associate a high order node with a mesh entity
getEntOfNode Return the mesh entity associated with a high order node
hasEntArrShape Determine whether an array of entities have high order shapgiven shape
type
getEntArrShapeOrder Get the order of the high order mesh entity shape for mulépliies
createEntArrShapes Create high order shapes for multiple entities
deleteEntArrShapes Delete high order nodes for entities
getEntArrShapes Return high order nodes for entities
setVixArrParam Set parametric coordinates of high order nodes
getVixArrParam Get parametric coordinates of high order nodes
setNodeArrToEnt Associate high order nodes with mesh entities
getEntArrOfNode Return the mesh entities associated with high order nodes

entities. For example, Figure 3 shows the Lagrange intatipgl and Bezier approximat-
ing shapes for mesh entities with constant or variable srddth a set of nodes used to
represent the higher-order shape for mesh edges and faces.

iMesh support for curved mesh entities focuses on spegjfyihich form of geomet-
ric approximation is in use — so that an application capableamdling multiple types
can distinguish between them — and the locations of the abptrints. Mesh shape
functionality is designed to make common usage — notablakqgrder Lagrange finite
elements — easy, while still allowing less common, more digated usage — such as
p-refinement, or spectral elements, for instance. As sudbafunctions exist for initial-
izing mesh entity shapes across the entire mesh, inclugingmly creation of high-order
nodes but initialization of their locations. At a more finexiged level, nodes can be cre-
ated in the same way as ordinary vertices (i.e., throughlac@liesh_createVix[Arr])
and associated with higher-dimensional entities eithéityehy-entity or node-by-node.
For equal order entities, creation of and access to all higkronodes for a mesh entity
and its closure (for example, all the nodes for a 27-node teskan) can be handled in
a single call. Mixed-order elements require a lower-leygdraach from the application,
but we expect that writers gf-refined finite-element solvers will have the expertise for
this. Finally, adjacency information for high-order nodessuch as the identities of all
hexahedra incident on a mid-edge node — is accessed by fuigtdithe mesh entity that
a node is associated with, and then finding adjacenciesdbetitity. The iMesh functions
providing this functionality are summarized in Table VI.
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Table VII. Functions for Basic Entity Set Functionality. I{Aunction names are prepended with iMesh_.)

| Function | Description |
createEntSet Creates a new entity set (ordered and non-unique if isListie
destroyEntSet Destroys existing entity set
isList Return true if the set is ordered and non-unique
getNumEntSets Returns number of entity sets contained in SH
getEntSets Returns entity sets contained in SH
addEntSet Adds entity set SH1 as a member of SH2
rmvEntSet Removes entity set SH1 as a member of SH2
isEntSetContained Returns true if SH2 is a member of SH1
addEntToSet Add entity EH to set SH
rmvEntFromSet Remove entity EH from set SH
addEntArrToSet Add array of entities to set SH
rmvEntArrFromSet Remove array of entities from set SH
isEntContained Returns true if EH is a member of SH

Table VIII. Functions for Entity Set Relationships. (Allfation names are prepended with iMesh_.)

| Function | Description |
addPrntChld Create a parent (SH1) to child (SH2) relationship
rmvPrntChid Remove a parent (SH1) to child (SH2) relationship
isChildOf Return true if SH2 is a child of SH1
getNumChld Return number of children of SH
getChldn Return children of SH
getNumPrnt Return number of parents of SH
getPrnts Return parents of SH

4.5 Entity Sets

Entity set functionality in the iMesh interface is dividewtd three parts: basic set func-
tionality, hierarchical set relations, and set Boolearrafiens.

Basic set functionality, summarized in Table VII, includesating and destroying entity
sets; adding and removing entities and sets; and seveityl sgttspecific query functiorfs.
Entity sets can be either ordered and non-unique, or unedderd unique; an ordered set
guarantees that set query results (including traversédlpiwiays be given in the order in
which entities were added to the set. The ordered/unordtatigs of an entity set must be
specified when the set is created and can be queried.

Entity sets are created empty. Entities can be added to avwedrfrom the set individ-
ually or in blocks; for ordered sets, the last of a number glidate entries will be the
first to be deleted. Also, entity sets can be added to or rethfveen each other; note that,
because all sets are automatically contained in the rodtaatcreation, calls that would
add or remove a set from the root set are not permitted. Atyesdt can also be queried
to determine the number and handles of sets that it contansto determine whether a
given entity or set belongs to that set.

Hierarchical relationships between entity sets are irgdnttd describe, for example,
multilevel meshes and mesh refinement hierarchies. Thetitinal relationships implied

4Note that the global mesh query functions (Section 4.1) emetsal functions (Section 4.2) defined above can
be used with the root set or any other entity set as their figstraent.
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Table IX. Functions for Entity Set Boolean Operations. (lction names are prepended with iMesh_.)

| Function | Description |
subtract Return set difference SH1-SH2 in SH
intersect Return set intersection of SH1 and SH2 in SH
unite Return set union of SH1 and SH2 in SH

here are labeled as parent-child relationships in the iNfeehface. Functions are provided
to add, remove, count, and identify parents and childrentardktermine if one set is a
child of another; see Table VIII.

Set Boolean operations — intersection, union, and sulitraet are also defined by the
iMesh interface; these functions are summarized in TabléThé definitions are intended
to be compatible with their C++ standard template libraryl(Bcounterparts, both for
semantic clarity and so that STL algorithms can be used bieimg@ntations where appro-
priate. All set Boolean operations apply not onlyawtity members of the set, but also
to setmembers. Note that set hierarchical relationships arenuhtided: the set result-
ing from a set Boolean operation on sets with hierarchidatimships willnot have any
hierarchical relationships defined for it, regardless efitiput data. For instance, if one
were to take the intersection of two directionally-coaestmeshes (stored as sets) with
the same parent mesh (also a set) in a multigrid hierarcasetis no reason to expect that
the resulting set will necessarily be placed in the multidnierarchy at all. On the other
hand, if both of those directionally-coarsened meshesaioatset of boundary faces, then
their intersection will contain that set as well.

While set Boolean operations are completely unambiguousiiordered entity sets,
ordered sets make things more complicated. For operatiomdich one set is ordered
and one unordered, the result set is unordered,; its cordemthe same as if an unordered
set were created with the (unique) contents of the ordeteshskthe operation were then
performed. In the case of two ordered sets, the iMesh spatidfictries to follow the spirit
of the STL definition, with complications related to the [b#iy of multiple copies of a
given entity handle in each set. We recognize that these aukesomewhat arbitrary, but
have been unable to find a more systematic way of defining theseations for ordered
sets. In the following discussion, assume that a givenyehéihdle appeans times in the
first set anch times in the second set.

—For intersection of two ordered sets, the output set wititam min(m,n) copies of
the entity handle. These will appear in the same order aserfitbt input set, with
the first copies of the handle surviving. For example, irgetion of the two seté =
{abacdbcdand B = {dadbag will result in AN\B = {abacd}.

—Union of two ordered sets is easy: the output set is a conatite of the input sets:
AUB = {abacdbcadadbgc
—Subtraction of two ordered sets results in a set contaimimgm— n,0) copies of an

entity handle. These will appear in the same order as in thgfiput set, with the first
copies of the handle surviving. For example; B = {abc}.

Regardless of whether the entity members of an entity sebralered or unordered, the
set members are always unordered and unique, with corrdsppysimple semantics for
Boolean operations.
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Table X. Basic Tag Functions. (All function names are prejeelhwith iMesh_.)

Name | Description

createTag Creates a new tag of the given type and number of values
destroyTag Destroys the tag if no entity is using it or if force is true
getTagName Returns tag ID string

getTagSizeValues Returns tag size in number of values

getTagSizeBytes Returns tag size in number of bytes

getTagHandle Return tag with given ID string, if it exists

getTagType Return data type of this tag

getAllTags Return handles of all tags associated with entity EH
getAllEntSetTags Return handles of all tags associated with entity set SH

Table XI. Setting, Getting, and Removing Tag Data. (All ftioe names are prepended with iMesh_.)

| Function | Description |

setData The value in tag TH for entity EH is set to the first tagValSizgds of the
array<char> tagVal

setArrData The value in tag TH for entities in EHarray[i] is set usingalat the array<char>
tagValArray and the tag size

setEntSetData The value in tag TH for entity set SH is set to the first tagVadSdytes of the
array<char> tagVal

sef[Int,Dbl,EH]Data The value in tag TH for entity EH is set to the int, double, ofitgrhandle in
tagVal; array and entity set versions also exist.

getData Return the value of tag TH for entity EH

getArrData Retrieve the value of tag TH for all entities in EH array, wiéta returned as al
array of tagVal's

getEntSetData Return the value of tag TH for entity EH

get[Int,Dbl,EH]Data Return the value of tag TH for entity EH; array and entity ssions also exist.

rmvTag Remove tag TH from entity EH

rmvArrTag Remove tag TH from all entities in EH array

rmvEntSetTag Remove tag TH from entity set SH

4.6 Tags

Tags are used to associate application-dependent dataawitbsh, entity, or entity set.
Basic tag functionality defined in the iMesh interface is suwamized in Table X, while
functionality for setting, getting, and removing tag daaummarized in Table XI.

When creating a tag, the application must provide its dgpe §nd size, as well as
a unigue name. For generic tag data, the tag size specifiesrtaow bytes of data to
store; for other cases, the size tells how many values ofiduat type will be stored. The
implementation is expected to manage the memory neededr® tsig data. The name
string and data size can be retrieved based on the tag'séhard the tag handle can be
found from its name. Also, all tags associated with a paldicentity can be retrieved; this
can be particularly useful in saving or copying a mesh.

Initially, a tag is not associated with any entity or entigt,sand no tag values exist;
association is made explicitly by setting data for a tagtgmair. Tag data can be set
for single entities, arrays of entities (each with its owttued, or for entity sets. In each
of these cases, separate functions exist for setting getagridata and type-specific data.
Analogous data retrieval functions exist for each of theses.
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Table XII. Error Handling Functionality. (All function naes are prepended with iMesh_.)
| Name | Description |

| getDescription | Retrieves error description |

When an entity or set no longer needs to be associated with a-tdor instance, a
vertex was tagged for smoothing and the smoothing operé&tiotnat vertex is complete
— the tag can be removed from that entity without affectingeotentities associated with
the tag. When a tag is no longer needed at all — for instancenwli vertices have been
smoothed — the tag can be destroyed through one of two varianhanisms. First, an
application can remove this tag from all tagged entitied, then request destruction of the
tag. Simpler for the application is forced destruction, iniet the tag is destroyed even
though the tag is still associated with mesh entities, altd@lvalues and associations are
deleted. Some implementations may not support forcedudziin.

4.7 Error Handling

Like any API, the iMesh interface is vulnerable to errorthei through incorrect input or

through internal failure within an implementation. Fortanrsce, it is an error for an appli-
cation to request entities with conflicting types and tog@s. Also, an error in the imple-
mentation occurs when memory for a new object cannot beattdc The iMesh interface
defines a number of standard error conditions which couldraadMesh functions, either

because of illegal input or internal implementation erreach of these error conditions
has an accompanying description, which can be retrievedlipyg iMesh_getDescription,

summarized in Table XII.

4.8 Compliance Testing

To ensure consistency between implementations and td assis developing partial im-
plementations based on their own mesh data structures, veedeaeloped a comprehen-
sive compliance test suite for the iMesh interface. Whetirtgs full implementation of
the interface, the test suite uses the iMesh implement&tioead a mesh file, then tests
each interface function. These tests are typically doneobyparing information retrieved
in multiple ways — for instance, retrieving coordinate infation in both blocked and
interleaved order, or retrieving adjacency informatiotitgrby-entity or for all entities of

a given type. The set and tag functions can be easily testemtdating sets or tags in
the test code and querying the new sets and tags to verifiydbaiectness. We are cur-
rently working on a function-level compliance testing, kattusers wishing to use a single
iMesh-based service can implement and test only the fumgtiequired for that service.
This fine-grained testing is much more difficult, becausesiztancy between different
calls can no longer be relied on. The combination of thesetésbsuites will ensure that
different iMesh implementations have the same behaviartlaat applications can rely on
correct interaction with iMesh services.

4.9 Fortran Compatibility

For compatibility with the Fortran convention that funetforeturning values do not mod-
ify their arguments, no iMesh function returns a value. Tibahll iMesh functions are C

void functions or Fortran subroutines. Also, string argatseén the C API have an accom-
panying argument giving their length; these string lengtjuments are added at the end
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of the argument list in the order the strings appear. FindilyiMesh API requires the use
of a Fortran compiler that supports the common pass-byewettension.

5. USAGE EXAMPLES

In this section, we provide several examples of using thesiMeomponent, including
finite element simulation, mesh modification, mesh partitig, and visualization. Each
of these services has been demonstrated to work with mailitipplementations of the
iMesh component API, and — where efficiency data are avalabthe overhead of using
the iMesh API rather than a native implementation is quitalsm

5.1 Existing iMesh Implementations

Before discussing applications of the iMesh interface, wlkesymmarize the status of the
existing iMesh implementations. Our consortium has predufour complete implemen-
tations of the iMesh interface based on our pre-existingnties¢abases. Each of the four
supports all standard finite element topologies — hexahéeirahedra, prisms, pyramids,
triangles, and quadrilaterals. Each of the four has its oartiqular strengths and areas of
most frequent application.

—The Flexible Mesh DataBase (FMDB) [Remacle and Shepha@3}2i8 designed es-
pecially to handle adaptively changing mesh data, inclydiexible storage of adja-
cency information. Application usage of FMDB includes cartgtional fluid dynamics
(CFD), fusion, and accelerator simulations.

—The Mesh Oriented datABase (MOAB) [Tautges et al. 2004hidipularly efficient in
its memory management. Application usage for MOAB includeslear reactor mod-
eling, neutron transport, and accelerator design optitioiza

—The Generation and Refinement of Unstructured Mixed-eferieshes in Parallel
(GRUMMP) [Ollivier-Gooch 2005] toolkit is designed for fret mesh generation, im-
provement, and adaptation, and is particularly efficienteitnieving adjacency infor-
mation. Application usage is primarily in CFD, especiallgredynamics and non-
Newtonian fluid dynamics.

—The Pacific Northwest National Laboratory’'s NWGRID [Treaand Trease 2004] is
intended for adaptive mesh refinement, especially for soigbimeshes. Application
usage includes computational biology, CFD, solid mectg@nd subsurface transport
modeling.

5.2 A Simple Finite Element Solver

To demonstrate the cost of using the iMesh interface in a&&fgiomputational science ap-
plication, we developed a simple finite element applicatiai solves a diffusion problem
in two dimensions on the unit square:

O(kOu(x,y)) = f Q)

ux=0)=0 u(x=1)=1 u(y=0=0 w(y=1)=0. (2)

The finite element solver uses linear triangular elemendsexiact integration rules. The
finite element solver is written in C and uses PETSc to soleditiear systems.
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Table XIll. iMesh functions used in the simple finite elemsalver for different mesh data access
| Array Access | Entity Iterator | Workset lterator |
getRootSet getRootSet getRootSet

getTagHandle
getVixCoordIndex
getAllVixCoords

getTagHandle
initEntlter
getNextEntlter

getDblArrData

getTagHandle
initEntArriter
getNextEntArriter

getEntities getEntAdj getEntArrAdj
getintArrData getVitxCoord getVitxArrCoords
getDblArrData getintData getintArrData

getDblArrData

We focus our attention on setting up the linear system ansidenfour different options
for accessing the mesh data: 1) through the native datastesc 2) through array-based
mechanisms defined in the iMesh interface, 3) through eitgrators, and 4) through
workset iterators. The native mesh data structures useditikts to store the vertex and
element information. Each vertex data structure inclutiesaordinate information, its
global id, and an integer boundary flag. Each element datatate includes downward
adjacency information to vertices, a global id, and the eletmarea which is computed
when the mesh is initialized. To access this same informalticmugh the iMesh interface
requires copying data into arrays as needed and storinglgid®, boundary flags, and
element areas as tags. In particular, we make use of the iMestions given in Table
Xl for cases 2)-4). In all cases, we must obtain the roofiseh the iMesh instance and
get the tag handles for the global ids, boundary flags andezleareas. In the case of
array access, we obtain a lists of all the vertex and factiesin the mesh and can obtain
the tag data as arrays of simam_vtxor num_elemWe can obtain the vertex coordinate
information and element connectivity information usinggh entity arrays or, as we did in
this example, directly from the mesh data base. It is guashby the iMesh interface that
the information returned using these array-based callsbeihave a consistent ordering
across all calls. The iMesh calls used for the entity and setrkerators provide the same
functionality on either an entity-by-entity basis or on anag-basis of entities. In each
case, we initialize the iterator to return mesh faces ane ety information through the
getNextEnt(Arr)lter function. For each entity (array)ueted, we obtain the downward
vertex adjacency information, the vertex coordinates,regetied global id, boundary, and
element area tag data.

We ran each case 10 times and report the average time retugetlp the linear system
in microseconds, along with the percentage increase incomspared to the use of native
data structures, in Table XIV. In the case of the workseattar we used workset sizes of
1,3, 5,10 and 20. This is a small problem size; the total numbelements in the mesh is
300, so these worksets represent .3%, 1%, 1.6%, 3.3%, a¥d.the total problem size,
respectively. Not surprisingly, the array based accedstodrtex and element information
has the least amount of overhead. Even with the cost of cgphia data into the array
structures, the small number of function calls (9 totalutessn an overhead of only 2.8%.
Entity iterators are perhaps the most natural to programrdswlt in the highest overhead
costs due to the very large number of function calls-£I® (ne+ ne- ny) +4-ny), where
ne is the number of elements ang is the number of vertices. The workset iterator cases
decrease in cost as the workset size grows and number ofdoreztlls decreases; in this
case, the total number of iMesh function calls is16x*ne/ WS+ 4+ ny/|W S, where
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|W g is the size of the work set.
WOULDLIKE TO RUN LARGER PROBLEM SIZE AND CASESWITH GRUMMP
AND MOAB BUT THISISTHE BASIC IDEAQTORNCLW

Table XIV. Timing results for the 2D linear finite elementwal using the SimpleMesh implementation of the
iMesh interface.

| Case || Time (us) | % % 100
Native 10479 -
Array-based 10774 2.8%
Entity Iterator 11642 11.1%
Workset Iterator (1) 11351 8.3%
Workset Iterator (3) 11183 6.7%
Workset Iterator (5) 11119 6.1%
Workset Iterator (10) 11095 5.8%
Workset Iterator (20) 11094 5.8%

5.3 Mesh Quality Improvement via Vertex Movement

The MESh QUality Improvement Toolkit (Mesquite)[Brewer el. 2003] improves the
accuracy of mesh-based simulations through optimizatfoime mesh vertex locations.
Mesquite can be used for element shape optimization, rteitgpmesh alignment, etc.,
and has been tested with the MOAB, FMDB, GRUMMP and NWGRID $Menplemen-
tations.

As input Mesquite requires an iMesh instance and entity setile designating the sub-
set of the mesh over which to perform the optimization. If émity set handle is the
root set, optimization is done for the entire mesh. Furthi@squite expects an integer tag
indicating whether the corresponding vertex may be movethdwptimization. Gener-
ally, boundary vertices are marked as fixed or otherwisetcaingd to the computational
domain boundary to ensure correct problem formulation. |@\Vtiiere is some variation
in iMesh functionality requirements in the different Me#gusolvers, all Mesquite opti-
mization algorithms require iteration over elements antices contained in an entity set,
element-vertex adjacency queries, entity set creatiomaodification® vertex coordinate
qguery and modification, and tag data query. These capabilitie sufficient to support
Mesquite’s global element shape optimizer; a sample inpginis shown in Figure 4(a)
with the corresponding output mesh in Figure 4(b). Whenroiging a single vertex or
subsets of mesh vertices, iMesh implementation must afsdesitly determine the ele-
ments adjacent to a vertex. Output results were identicdldth the global and Laplacian
smoothers, and for data access using Mesquite’s native nepsbsentation and via the
iMesh interface.

Mesquite is also capable of optimizing to obtain specificrabgeristics of the mesh on
an element-by-element basis using target matrices. Treseatculated target matrices
are stored as iMesh tag data on the mesh elements and rdtdexiag optimization. For
example, Figure 4(c) is the result of optimizing the samaiinpesh given previously,
except that target matrices are used to preserve the sizaspedt ratio of the elements.

5This is an artifact of early versions of both Mesquite andiMesh interface. The Mesquite-iMesh interaction
code could be updated to remove the need for this capability.
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(a) Initial mesh (b) Optimized mesh (c) Optimized mesh using target
matrix optimization

Fig. 4. Element shape optimization using Mesquite.

(b) Deformed mesh
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(c) Optimized mesh

(a) Initial mesh

Fig. 5. Deforming boundary optimization using Mesquite.

Table XV. CPU Time (seconds) for optimization of 40,000 edeitnmeshes.
Optimizer Internal iMesh
MOAB | GRUMMP
Global shape optimization| 45.38 45.16 | 45.16

Laplacian smoother 111.60 | 472.65 —
Target matrix optimization| 79.30 82.65 | 89.38
Deforming boundary 12.73 15.48 | 21.59

Another example is shown in Figure 5 in which element aspatid is preserved while
updating the mesh for a deforming mesh boundary. An initigd@tropic mesh, shown in
Figure 5(a), is used to calculate the target matrices. Ei§(lv) shows the same mesh after
boundary deformation, with some elements inverted duedchtiange in location of the
boundary vertices. This mesh (with the stored target negjis the input to the Mesquite
optimizer. The resulting mesh, with the element anisotio@served, is shown in Figure
5(c).
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Table XVI. Performance for the iMesh swapping service foupessonic aircraft mesh (251,140 tetrahedra).

Native iMesh implementations
(non-iMesh) | GRUMMP | FMDB | MOAB
Swaps 25,448 28,629 27,811 | 27,592
Rate (st0) 3,380 2,800 223 122
Memory (MB) 216 MB 292 MB 622 MB | 110 MB

Table 5.3 shows the impact of the iMesh interface and impleai®n on optimizer
performancé. Each row of the table corresponds to one of the examples akitiveéhe
mesh interval size reduced by a factor of ten, resulting ishme with 40,000 elements.

The global shape optimization results demonstrate oneediiantages of using a mesh
database library over a custom storage scheme. The moreacbnegpresentation of data
in the iMesh implementations results in a slight perforngingprovement over Mesquite’s
internal mesh representation. The Laplacian smoothinggiemphasize the overhead of
a standard interface and generalized mesh database. Tlo¢ghémgocalculation is trivial.
The time spent in tens of millions of queries for small amswitdata (adjacencies, tag
data, vertex coordinates, etc.) dominates the run timeedgtimization.

The latter two rows in Table 5.3 demonstrate the run time obsiccessing tag data.
The time spend accessing other mesh data is the same as ¢pollaéshape optimization
case. The difference in run time for each mesh databaseiislgre function of the time
spend querying target matrices stored in tag data.

5.4 Mesh Quality Improvement via Topology Optimization

Local mesh topology optimization can be a powerful tool fmproving the quality of
unstructured meshes; however, mesh topology modificatiovften referred to as swap-
ping — is difficult enough to implement that an iMesh-basewise that performs these
operations would be useful for many applications. The @tdase and edge swapping op-
erations (see, for instance, [Freitag and Ollivier-Goo887] for a description) have been
implemented using the iMesh API [Ollivier-Gooch 2006; 2D08

The swapping service represents a worst-case scenariffibderecy tests for the iMesh
interface, in that the service requires fine-grained actteasd modification of the mesh
database using the interface. As such, the swapping senakes a large number of calls
through the interface, each returning a small amount of. d&gsecifically, the swapping
service uses the iMesh entity iterators, adjacency queaieay-based vertex coordinate
gueries, checks for entity type and topology, and entityaioa and deletion functions.
Optionally, the swapping service can also be restricte@tomfigure only tetrahedra that
are members of a given set, requiring the ability to querynsetnbership and to assign
new entities to sets. A second optional functionality is abdity to accept a tag and tag
value to indicate which faces within a set should be consilérr swapping.

The swapping service has been tested with three differezgiNmplementations: GRUMMP,
MOAB, and FMDB, and the results compared with an implemémabf the same algo-
rithms using the GRUMMP back-end (referred torestive). For testing purposes, we
use a mesh for a supersonic aircraft initially containing,280 tetrahedra. Because of

6The iMesh implementation in GRUMMP does not yet supporteseto-element adjacency queries for surface
meshes, so it was not possible to run this Laplacian smapthiample with the GRUMMP iMesh implementa-
tion.
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Fig. 6. Breakdown of relative CPU time for the swapping sexuiith three different iMesh implementations
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differences in the order in which faces are accessed, oatpshes from the iMesh swap-
ping service are not identical but we have confirmed elsesvf@ifivier-Gooch 2008] that
the meshes have statistically indistinguishable qualitgble XVI contains the number
of swaps performed, the swapping rate, and the memory usezhfithh implementation.
The CPU time overhead for using the GRUMMP iMesh implemémtatather than the
native implementation is about 20% for this case; the 40%twad in memory usage is
required to support certain forms of entity creation thatmot supported natively by the
mesh database. The results for this case clearly show #ndetigners of the FMDB and
MOAB mesh databases made different trade-offs in decidihgtwlata to store and how.
MOAB was designed for low memory usage — less than 40% of theamgusage of the
next smallest database here. FMDB was designed for papalttdrmance and flexibility,
neither of which are required by this service. Figure 6 shlative CPU time for each
implementation, broken down into the time spent in the swappervice itself; retrieving
adjacency information; retrieving coordinate informatiperforming mesh modifications;
reading and pre-processing mesh data; and manipulatiragdts. The difference in rela-
tive cost for the swapping service reflects the differendetal CPU time, as the absolute
time for the driver varies by only about 10% between impletagons. The most sig-
nificant differences in overall performance are clearlydiaaency retrieval and iterators.
Optimization of these routines would no doubt improve tipeirformance significantly for
this service and others that use the iMesh interface silyilarhis case also illustrates
clearly that efficient implementation of iMesh functionatlare used heavily by a service
is essential for good run-time performance.

5.5 A Partitioning Service

As a precursor to our ongoing work for a parallel extensioth® iMesh interface, an
iMesh-based service that performs partitioning would befuls Partitioning distributes
data over sets of processors and is needed by unstructuwiéat adaptive parallel appli-
cations. Many of the partitioning methods in Zoltan [Bomaraé 2007] have been made
available in a service that uses the iMesh API to access nagah @he partitioners avail-
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able can be grouped into three categories; simple paritiior testing and demonstration,
geometric or coordinate-based partitioners, and grapitipamg.

For the simple partitioners, the partitioning service usesiMesh queries for entities
and number of entities. The partition service can operatesdéevel of any mesh entity (i.e.
vertex, edge, face, or region). The partitioning servicesusoth single-entity and array-
of-entities access to mesh data. For the geometric pawtitsy the partitioning service uses
the iMesh single-entity adjacency queries and array-basddx coordinate queries. For
graph partitioning, the partitioning service uses theyalrased adjacency queries.

The partition data is stored by both attaching an integertdagach mesh entity and
collecting entities into sets with integer tags. Any oldtjieam data is destroyed before
new partition data is created. The partition service usdityeset query, deletion, and
creation functions as well as the ability to assign new igstito sets and get, destroy,
create, and set tag data.

The partitioning service has been tested and is interoperdth three mesh database
implementations available through the iMesh C interfac@AB, FMDB, and GRUMMP.
Users need only link in the desired implementation; no otihemnges are necessary. A
partitioning service interfacing directly to MOAB perfosnonly slightly faster than the
partitioning service interfacing to MOAB through iMesh. Partition a mesh with 1.4
million faces by faces using recursive coordinate bisectibe MOAB native implemen-
tation required 37.2 seconds, while using the ITAPS C iatatto access the MOAB data
structures required 38.2 seconds (2.5% overhead).

5.6 Visualization Using the iMesh Interface

Visualization and interactive manipulation of meshes asagfields defined on meshes is
important in many aspects of simulation software develagmeowards this end, we have
developed a Vislt [Childs et al. 2005] plugin that accesseshrand solution data through
an iMesh implementation. We have demonstrated that theupiugin is interoperable
across three different iMesh implementations: GRUMMP, MB#nd FMDB. The plugin
uses array-based vertex coordinate queries. Solutioriglegérieved using iMesh tag ca-
pabilities. In addition, the plugin uses recursive entiéy gueries to map an iMesh entity
set hierarchy to a roughly equivalent Vislt construct chbesubset inclusion latticeThis
enables Vislt to provide intuitive GUI controls to usersénrhs of subsets that are charac-
teristic to various stages of their design and analysis fim#ls. For example, users often
need to focus their attention on a specific part in the origd#D model, a specific regime
in the material model, or a specific discretization regiothinumerical model. The abil-
ity for users to interactively visualize, query, calculated otherwise analyze data in terms
of characteristic subsets such as these both within andsesch stage of a design and
analysis workflow fundamentally enhances the flexibilityted analysis activities possible
within the Vislt visualization tool.

5.7 Size Field-Based Mesh Adaptation

Adaptive methods are central to ensuring the accuracy diadhifity of simulation results.
One approach to supporting mesh adaptation is to provide&e¢hat can take an existing
mesh with a new mesh size field associated with it and creatédbired adapted mesh by
applying appropriate mesh modification operations. Sucérace for anisotropic mesh
adaptation has been under development of a number of yeiags [dl. 2005]. To ensure
the ability to deal with general curved geometries that aanefrom CAD systems, the

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.



A Software Component for Mesh Query and Manipulation . 25

7 .
X
Ly
L
=y

& =
g
Bl %
Gt
NG

A

X
1"» )
)
oy

<RI
i )

(a) Before refinement (408 regions) (b) After refinement (36,261 regions)
Fig. 7. An example of size field-based mesh adaptation.

service builds on a generalized interaction with the gedmsatodel [Beall et al. 2004]
and ensures the mesh can properly represent the domairecdsniLi et al. 2003]. This
service has been used to construct adaptive simulatioreguves by combining it with
finite element and finite volume solvers, and associated érdicators. Since the mesh
adaptation service works off a general anisotropic mesh fétd, error indicators that
have been used include various combinations of analytidsjednisotropi@ posteriori
correction indicators and geometric approximation comsitions [Shephard et al. 2005;
Wan et al. 2005]. An example of a part before and after refimemsing this approach is
shown in Figure 7.

The current version of the mesh adaptation service builds@RMDB mesh library that
employs mesh topology like iMesh. Although it is possibledplace all FMDB calls with
iMesh calls in the mesh adaptation service code (an acplatyned for the future), the size
of the code and the desire to apply the mesh adaptation tacapphs quickly prompted
us to take an alternative initial approach. In this approaobshes are accessed through
the iMesh functions and loaded into the FMDB structures. fiesh adaptation process is
carried out and the resulting mesh is then put back into iMesh. This approach has the
disadvantage that at the beginning and end of the mesh gidappaocess there are two
copies of the mesh. However, since the size of the mesh isaypsmall compared to the
structures used during the implicit finite element and finidkime solvers being used to
date, there have not been memory limitations introducedhisyprocess.

6. DISCUSSION AND CONCLUSIONS

In this paper, we have described a new software componemiésh-based applications
— both meshing and solver applications. We have describeétail the key features of
this software component, called iMesh: its data model — idiefines the types of data
that the component works with — and its interface — which defihow applications can
interact with mesh data.

Also, we have shown by example that iMesh component API istilexenough for a
wide range of applications — including finite element sodyanesh improvement and
adaptation, partitioning, and visualization. Our expeci with these examples shows
that relatively complex mesh modification and solution iegments can be met by the
interface, with low impact on efficiency. Specifically, foisanple finite element solver,
overhead induced by using the iMesh interface is less théf, #8pecially when data for
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multiple entities is retrieved through the mesh interfaceree. For mesh smoothing, the
overhead rate varied significantly from case to case, depgrah the amount of work
done by the smoothing code relative to the number of callsuiin the mesh interface.
For mesh swapping, another fine-grained use case for thecoegbonent, overhead rates
were about 20% compared with a native implementation of #émeesalgorithms. Three
higher-level services — mesh partitioning, visualizatiand mesh adaptation — have also
been tested across multiple iMesh implementations. In eash, the services have proved
to be interoperable, and the overhead in using the iMeshfaute is acceptable. Overall,
our experience with these services confirms that relatigetpplex mesh operations can
be performed correctly using the iMesh interface. Also, weeifound clear examples of
significant differences between mesh database designemalbxun time for a particular
service’

Several implementations of the iMesh component are cuyrewailable, as are the ser-
vices described in this paper.[ITAPS Software Webpage PB®7analogous software
component for geometric query and manipulation for mesebdapplications has also
been developed, and work is nearing completion on a paeadtehsion of the mesh com-
ponent.
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A. A SIMPLE PROGRAM USING THE IMESH COMPONENT

As a simple example of usage of the iMesh component, incguidinguage differences, is
illustrated by two versions of the same short program, or@amd the other in Fortran.

C Version

In this version, note that string arguments (see lines 25&ndkach have an argument
at the end of the call list indicating the string length, fompatibility with Fortran string
calling conventions.

1 /+* FindConnect: Interacting with i Mesh
2 *

3 * This program shows how to get information about

4 * a mesh, by getting connectivity two different

5 * ways (as connectivity and as adjacent O-di nensi onal
6 =* entities).

7 *

8 =+ Usage: FindConnect

9

10 =/

11 #i ncl ude <stdio. h>
12 #include "i Mesh. h"
13 int main( int argc, char *argv[] )

14 {

15 int i, ierr;

16 i Mesh_I nstance nesh;

17 i Base_EntityHandl e *ents, *verts, =*allverts;
18 int ents_alloc = 0, ents_size;

19 int verts_alloc = 0, verts_size;

20 int allverts_alloc = 0, allverts_size;

21 int roffsets, offsets_alloc = 0, offsets_size;
22 int vert_uses = 0;

23

24 /+ create the Mesh instance */

25 i Mesh_newMesh("", &mresh, & err, 0);

26

27 /+ ldentify the root set =/

28 i Base_EntitySet Handl e root _set;

29 i Mesh_get Root Set (nesh, &root_set, & err);

30 /+ load the mesh x/

31 i Mesh_| oad(nesh, root_set, "125hex.vtk", "", &err, 10, 0);

32 /+ get all 3d elenents */

33 i Mesh_getEntities(nmesh, root_set, iBase REG ON, i Mesh_ALL_TOPOLOd ES,

34 &ents, &ents_alloc, &ents_size, &err);
35 /+ iterate through them =/

36 for (i =0; i < ents_size; i++) {

37 [+ get connectivity */

38 verts_alloc = 0;

39 i Mesh_get Ent Adj (mesh, ents[i], iBase_VERTEX,

40 &verts, &verts_alloc, &verts_size,
41 &err);

42 /+* sum nunber of vertex uses =*/

43 vert_uses += verts_size;

44 free(verts);

45 1}

46 /+* now get adjacencies in one big block =/
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47 i Mesh_get Ent Arr Adj (nmesh, ents, ents_size, iBase_VERTEX

48 &allverts, &allverts_alloc, &allverts_size
49 &of fsets, &offsets_alloc, &offsets_size
50 &ierr);

51

52 /+ conpare results of two calling methods */

53 if (allverts_size != vert_uses)

54 puts("Sizes didn't agree")

55 else

56 puts("Sizes did agree")

57

58 return O

59 }

Fortran Version (32 bit compiler)

In this version, note particularly the use of Cray pointed aall-by-value extensions, both
ubiquitous features of Fortran77 compilers, even thoughnmandated by the language
standard.

1 ¢ FindConnect: Interacting with i Mesh
2c
3 ¢ This program shows how to get nore information about a mesh, by
4 c getting connectivity two different ways (as connectivity and as
5 ¢ adjacent O-di nensional entities).
6 c Usage: Fi ndConnect
7 program fi ndconnect
8 #include "i Mesh_f.h"
9 c declarations
10 i Mesh_I nstance nesh
11 i Base_Enti tySet Handl e root _set
12 integer ents
13 integer rpverts, rpallverts, ipoffsets
14 pointer (rpents, ents(0:*))
15 poi nter (rpverts, verts(0:x))
16 pointer (rpallverts, allverts(0:x))
17 poi nter (ipoffsets, ioffsets(0,*))
18 integer ierr, ents_alloc, ents_size
19 integer iverts_alloc, iverts_size
20 integer allverts_alloc, allverts_size
21 integer offsets_alloc, offsets_size
22 ¢ create the Mesh instance
23 call iMesh_newMesh("", mesh, ierr)
24 c identify the root set
25 call iMesh_get Root Set (WAL(nmesh), root_set, ierr)
26 ¢ |l oad the nesh
27 call iMesh_| oad(®WAL(nesh), WAL(root_set), "125hex.vtk", "",
28 1 ierr)
29 c get all 3d elenents
30 ents_alloc = 0
31 call iMesh_getEntities(WAL(nesh), WAL(root_set),
32 1 W/AL(i Base_REG ON), 9%/AL(i Mesh_ALL_TOPOLOGQ ES), rpents
33 1 ents_alloc, ents_size, ierr)
34 ivert _uses =0
35 c iterate through them
36 doi =0, ents_size-1
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37 c get connectivity

38 iverts_alloc =0

39 idum = ents(i)

40 call i Mesh_get Ent Adj (%/AL(mesh), 9%/AL(iduny,

41 1 W/AL(i Base_VERTEX), rpverts, iverts_alloc, iverts_size
42 1 ierr)

43 ¢ sum number of vertex uses

44 ivert_uses = ivert_uses + iverts_size

45 call free(rpverts)

46 end do

47 ¢ now get adj acencies in one big block

48 allverts_alloc =0

49 offsets_alloc =0

50 call iMesh_get Ent Arr Adj (WAL(nesh), ents

51 1 W/AL(ents_size), WAL(iBase_VERTEX), rpallverts
52 1 allverts_alloc, allverts_size, ipoffsets, offsets_alloc
53 1 of fsets_size, ierr)

54 call free(rpallverts)

55 call free(ipoffsets)

56 call free(rpents)

57 c conpare results of two calling nethods

58 if (allverts_size .ne. ivert_uses) then

59 wite(x,' ("Sizes did not agree!")")

60 el se

61 wite(x,' ("Sizes did agree!")’)

62 endi f

63 call iMesh_dtor(®WAL(nesh), ierr)

64 end

A.1 Building iMesh Executables

Building an iMesh executable requires that the compilertide to find the iMesh header
files (iIMesh.h and iBase.h, or their Fortran counterparid)that the linker be able to find
a library containing the iMesh implementation. By conventiiMesh implementations
contain a makefile snippet that defines a standard set obl@sisan application’s makefile
then includes this snippet, greatly simplifying the buitdgess. The makefile for building
the two example programs above is:

1 include /path/to/iMesh/i Mesh-Defs.inc

2

3 FC = ¢gfortran -fcray-pointer -nB2

4 CXX = g++

5 CC = gcc

6

7 FindConnectC. Fi ndConnectC. o

8 $(CXX) $(CXXFLAGS) -0 $@ Fi ndConnect C. o ${| MESH_LI BS}

9

10 Fi ndConnect F: Fi ndConnect F. o

11 $(CXX) -nB2 -lgfortran -lgfortranbegin -o $@\
Fi ndConnect F. o ${1 MESH LI BS}

12

13 .c.o:

14 $(CCO -c $(CFLAGS) $(! MESH | NCLUDES) $<

15

16 .F.o:

17 ${FC} -c ${FFLAGS} ${!|MESH_ I NCLUDES} $<
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Note that both executables are linked using the C++ linkactmmmodate implementation
libraries written in C++. The make variableMESH | NCLUDES (used in lines 14 and 17)

andl MESH_LI BS (usinginlines 8 and 11) are definedipat h/ t o/ i Mesh/ i Mesh- Def s. i nc;
these variables are of course implementation-dependaradditional useful variable de-

fined by convention in this file i§ MESH_LI B_FI LES, which identifies iMesh imple-
mentation library files, so that these can be used as depeiedém makefile targets.
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