
· 1

An Interoperable, Data-Structure-Neutral Component for Mesh Query and Manipulation

*

Categories and Subject Descriptors: D.2.12 [Software Engineering]: Interoperability; D.2.13 [Software En-
gineering]: Reusable software—reusable libraries; I.6.7 [Simulation and Modeling]: Simulation support sys-
tems—environmentsGeneral Terms: Design, Performan
eAdditional Key Words and Phrases: data stru
ture independen
e, mesh-based simulations, meshmodi�
ation, software
omponents
1. INTRODUCTION

Developing new simulation software for problems describedby partial differential equa-
tions has become a relatively common but nonetheless still laborious task. Much of the
effort required to create a new simulation code goes into developing infrastructure for
mesh and geometry data manipulation, equation discretization, adaptive refinement, design
optimization, and so forth. Because this infrastructure iscommon to many simulations, re-
usable software for these tasks could be shared across many simulation codes and could
significantly reduce both the time, effort, and expertise required to develop and maintain
new simulation codes.

Currently, libraries are the most common mechanism for software re-use in scientific
computing, including highly-successful examples for numerical linear algebra [Balay et al.
1997; Balay et al. 2004; EISPACK 2004; LAPACK 2004; LINPACK 2004] and parallel
partitioning and load balancing [Devine et al. 2002; Boman et al. 2007; ParMETIS 2008;
Walshaw and Cross 2007; Jostle 2002]. A key drawback in usinglibraries as a mechanism
for software re-use is the difficulty in modifying an application already using one library so
that it can use another. At a minimum, all symbol names from one library must be changed
to names from the other. However, the difficulties really only begin there. Libraries of
similar purpose often package functionality in very different ways. Consequently, data
structures shared between application and library and eventhe control flow between appli-
cation and library may need to be totally re-designed. This need to re-design an application
— or portions of it — so that it can re-use some other piece of software is often termed an
impedance mismatch. The greater the impedance mismatch, the more effort is required to
resolve it. This time-consuming re-design process can be a significant diversion from the
central scientific investigation, so many application researchers are reluctant to undertake
it. As a result, improvements in algorithms often take yearsto migrate from the research
community into application simulations.

Componentsrepresent a higher level of abstraction than libraries. Essentially, a com-
ponent defines both aspecificationfor an application programming interface (API) and an
abstractdata modeldefining the semantics of the data that is passed through the interface.
Returning to the familiar example of linear algebra, a numerical linear algebra compo-
nent would define a standard interface for operations such asdot products, matrix-vector
multiplication, and linear system solution. Its abstract data model would include objects
such as vectors and matrices. A key advantage to components is that any application using
a component can,without modification, use another implementation of the same compo-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 2–0??.

A Software Component for Mesh Query and Manipulation · 3

nent API, because all implementations have substantially equivalent functionality. In other
words, software re-use can be achieved with no additional effort.

This paper describes a meshing component intended to support low-level mesh access
and manipulation. In addition, this component is designed to support the requirements
of solver applications, including the ability to define meshsubsets and to attach arbitrary
user data to mesh entities. Finally, our mesh component is intended to be both language
and data structure independent. In summary, the mesh component we present is intended
to support low-level interaction between applications programs — both meshing and so-
lution applications — and external mesh databases regardless of the data structures and
programming language used by each.

The most prominent example of prior research in defining interfaces for meshing is the
Unstructured Grid Consortium (UGC), a working group of the American Institute for Aero-
nautics and Astronautics’s Meshing, Visualization, and Computing Environments Techni-
cal Committee [UGC Consortium 2005]. The first release of theUGC interface [UGC
Consortium 2002] was aimed at high level mesh operations, including mesh generation
and quality assessment. Recognizing a need for additional and lower-level functionality,
the UGC has developed an interface for defining generic high-level services, as well as a
low-level query and modification interface for mesh databases aimed exclusively at mesh-
ing operations [Steinbrenner et al. 2005]; results of such queries in the UGC interface are
explicitly expressed as integer indices into data arrays, with obvious implications for how
implementations of that interface must store data. The low-level UGC interface is similar
in scope to our API, although we have deliberately been more general in providing support
for functionality required by solvers and in emphasizing data structure neutrality.

1.1 A Simple Use Case for a Mesh Component

As an example of how a typical scientific computing application might benefit from using
a mesh component, let us consider a finite element solver (FESolve) for some partial dif-
ferential equation, and how this application might evolve over time.1 Let us assume that
when first developed, FESolve is a simple finite element solver, using linear elements. At
run time, FESolve loads a mesh from a file and does some pre-processing of the mesh to
compute geometric quantities (such as integration points and weights) and perhaps to com-
pute some mesh topological relationships that weren’t in the file. Then, FESolve iterates
over the elements in the mesh, computing the residual and thestiffness matrix for each,
and assembling these into a global linear system. This system is solved, and the solution
is updated at every node. This iteration process may be repeated several times, e.g., for
time-dependent or non-linear problems.

After FESolve has been in use for some time, its developers decide that mesh adaptation
is required to improve solution accuracy and/or efficiency.With current approaches to de-
veloping mesh infrastructure software, they have two fundamentally different choices. One
choice is to select some existing mesh adaptation code written by some other researcher(s)
and integrate it with FESolve by resolving whatever impedance mismatch may exist. In
many cases, this will require replacing the entire mesh database and infrastructure in FE-
Solve with new software infrastructure from the mesh adaptation code, including updating
FESolve to access data in a totally different way. The other choice is to ignore all exist-

1While different applications will surely have different requirements for interacting with unstructured mesh data,
many, if not most, applications will follow roughly this same outline.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · Carl Ollivier-Gooch et al.

ing mesh adaptation implementations and develop, from scratch, an implementation that is
specifically tailored to fit into FESolve’s current architecture. Of course, there are hybrid
solutions which combine these two approaches.

A standard mesh component provides a third, less painful wayto make this transition.
Let us assume that there exists a stand-alone service that provides key mesh adaptation
operations such as element division and coarsening. A mesh component API then serves
as the intermediary between the provider of mesh data (in this case, FESolve) and users of
mesh data (in this case, the mesh adaptation service). The API specifies a set of fundamen-
tal mesh query and manipulation operations. In essence, a mesh component API proclaims
“If you are going to ask me about a mesh, these are the questions you can ask and this is
how you ask them.” or “If you are going to operate on a mesh, these are the operations you
can perform and this how you perform them.” The component’s data model specifies how
mesh data is encapsulated.

When using a standard mesh component API and an adaptation service that is compliant
with that API, the developers of FESolve are now required only to provide implementations
of the API functions used by the adaptation code. That is, if the mesh adaptation code uses
only a handful of the queries and operations in the mesh component API, then only this
handful of functions needs to be added to FESolve. Once done,FESolve’s data, in its
own internal data structures, can be used directly by the mesh adaptation code without
further integration. As a bonus, in implementing part of themesh component API, the
FESolve development team will have done some of the work required to integrate other
useful advanced capabilities available through the mesh component API.

1.2 The ITAPS Mesh Component

In this paper, we will describe a newly developed component intended to provide sup-
port for the mesh access and manipulation requirements of practical, large-scale scientific
computing applications. This component, developed as partof a larger project by the
Interoperable Tools for Advanced Petascale Simulation (ITAPS) center to develop inter-
operable software tools for meshes, domain geometry, and solution representation [Chand
et al. 2008], is called iMesh. Note the words “support for”: the iMesh component is not
intended to be a general interface to all possible meshing operations, but rather, to define
the operations required at a mesh database level so that high-level operations — including
mesh generation, mesh improvement, mesh adaptation, parallel partitioning, load balanc-
ing, and design optimization — can be implemented asservicesthat store and manipulate
mesh data by using the iMesh component API and mesh database implementations sup-
porting it. To be genuinely useful to real applications and real application developers, the
component must be

—general purpose: all mesh operations must be implementable based on the iMesh com-
ponent API,

—efficient: data access using the iMesh component API and itsimplementations must not
come at too high a cost in overhead,

—flexible: different applications may want to use differentapproaches for the same task,
and

—interoperable: implementations of the component API mustbe truly interchangeable,
and services designed to use the interface should work on a plug and play basis, regard-
less of data structures and programming language.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 5

Section 2 describes the design principles we followed to ensure that the iMesh component
met these goals. We first defined a data model (see Section 3): meshing operations require
information about mesh entities (like vertices, triangular faces, and hexahedral regions),
collections of entities, and meta-data associated with mesh entities. Using that data model,
we then defined an API that would support general meshing and mesh-related solver op-
erations (see Section 4). In addition to defining the iMesh component API, we have also
developed implementations of it based on existing mesh databases and used these imple-
mentations for various meshing and PDE solution tasks; several examples will be given
in Section 5. The paper will conclude with discussion of lessons learned from developing
this component, of the current status of software using the iMesh component API, and of
future prospects for extension and application of the iMeshcomponent.

2. DESIGN PRINCIPLES

In Section 1.2, we summarized our goals for the iMesh component API. As design of the
component API continued, we found that several principles recurred frequently in guiding
our design decisions as we worked towards those goals. Specifically, we found that we
made decisions to produce an interface that was:

Complete..Clearly, a minimal requirement is that all required mesh operations must be
possible, either intrinsically through the iMesh component API or by building on it.

Run-time efficiency..For the iMesh API to be useful for applications it must have low
overhead. Specifically, the interface must be designed so that an iMesh implementation can
provide data access and manipulation nearly as rapidly as native access to the same mesh
database. An example of the application of this principle inthe iMesh interface are the
availability of both single-entity and array-of-entitiesaccess to mesh data, either of which
may be more efficient depending on the circumstances.

Ease of use..To lower the barrier for adoption of the interface, it must berelatively easy
for programmers to use. This implies the interface must be relatively compact but also pro-
vide direct access to commonly used constructs, even at the expense of additional functions
in the interface. For example, we recognize that certain types of metadata – specifically,
double, integer, and entity handle metadata – will be very common and more easily han-
dled both by iMesh implementations and applications if there are specific functions for
these types. However, to preserve flexibility in such cases,we also we also provide general
access mechanisms; for the metadata example, generic data is described using byte strings.

Flexibility.. We recognize that different applications may choose to express the same
semantic content in different ways. Where feasible, the iMesh interface supports this. For
example, one application may choose to represent boundary condition data by metadata
attached to particular mesh entities; another may represent the same information by col-
lecting entities with the same boundary condition into a set. As another example, some
applications may choose to access data entity by entity while others may prefer array ac-
cess to data.

Extensibility.. We have designed the interface to allow extensions to the low-level mesh
access functionality that the interface defines. For example, a recent addition to the iMesh
interface is support for curved mesh entities. The support was added to the iMesh inter-
face without requiring changes to functions already in the interface. As a second example,
ongoing work for a parallel extension to the iMesh interfaceleverages serial iMesh func-
tionality for parallel usage.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · Carl Ollivier-Gooch et al.

Simplified applications programming..One obvious way to simplify applications pro-
gramming is by making the iMesh interface as lightweight as possible. In addition, wher-
ever possible, the iMesh interface is designed to place difficult tasks under the control of
the implementation rather than the application. A prime example of this is in the area of
memory management. An application, when requesting an array of data, need not know
in advance the size of the array. Instead, the application can pass in an uninitialized array
and the implementation automatically allocates the appropriate amount of memory for that
array.

Interoperability.. In the long-term, success of the iMesh component will dependon how
well the component truly supports interoperability. This is the key to being able to leverage
the effort in development of both implementations and services as well as conversion of
applications to use the interface. Interoperability, in turn, requires not only the use of
a standard interface, but also data structure and programming language neutrality. Also,
interoperability can be enhanced by eliminating grey areas, where component behavior is
implementation-dependent.

3. DATA MODEL

In the iMesh data model, all mesh primitives — vertices (0D),edges (1D), faces (2D), and
regions (3D) — are referred to asentities. Mesh entities are collected together to form
entity sets. All topological and geometric mesh data,2 as well as all other entity sets, are
contained in aroot entity set. To allow multiple meshes to be operated on independently,
the iMesh data model supports the notion of aninstance, which is analogous to a C++
object (in this analogy, the iMesh interface definition is, loosely, a C++ class). In many
implementations, the instance be a database or collection of containers storing all of the
mesh entities, with other entity sets containing handles for these entities rather than copies
of all entity data. Any iMesh data object — an entity or any entity set including the root
set — can have one or moretagsassociated with it, so that arbitrary data can be attached
to the object. To preserve data structure neutrality, all iMesh data objects are identified by
opaque handles.

3.1 Mesh Entities

All the primitive components of a mesh are defined by the iMeshdata model asentities.
iMesh entities are distinguished by their entity type (effectively, their topological dimen-
sion) and entity topology; each topology has a unique entitytype associated with it. Exam-
ples of entities include vertices, edges, triangular or quadrilateral faces in 2D or 3D, and
tetrahedral or hexahedral regions in 3D; a complete catalogof entities supported by iMesh
is shown in Figure 1. Faces and regions have no interior holes. Higher-dimensional entities
are defined by lower-dimensional entities using a canonicalordering.

Adjacencies describe how mesh entities connect to each other. For an entity of dimen-
siond, a first-order adjacency request returns all of the mesh entities of dimensionq which
are on the closure of the entity for downward adjacency (d > q), or for which the entity
is part of the closure for upward adjacency (d < q), as shown in Figure 2(a) and (b). For
a particular implementation, not all first-order adjacencies are necessarily available. For
instance, in a classic finite element element-node connectivity storage, requests for faces or

2Geometric mesh datais geometric data required to define shapes of mesh entities.This is distinct fromgeometric
model data, which defines the shape of the problem domain.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 7

Point

Vertex

Segment
Line

1

2
Edge

PyramidTetrahedron Prism

1

2

5

6
4

3
1

2

3

4

54

1

2

3

1
3

2

4

7

65
6

7

8

5

1
3

2

4

Hexahedron Septahedron Polyhedron

Polygon
2

Triangle

3

1

1

2 3

4

Quadrilateral

Face

Region

1 2
3

4

5

6

7
8

9

1

2

3
4

5

7
8

61 2

3

4

5

6

1
2

3
7

10

4

6

5

8
9

11

1
2

3
7

4
6

5
9

12 11

10
8

1
2

3 4

3

2

1

Entity Canonical Ordering of Faces
1 2 3 4 5 6

Tetrahedron △124 △234 △314 △132 — —
Pyramid △125 △235 △345 △415 �4321 —
Prism �1254 �2365 �3146 △132 △456 —

Hexahedron �1265 �2376 �3487 �4158 �4321 �5678
Septahedron △125 �2365 �3476 �4157 �4321 △567

Fig. 1. Entities supported by the iMesh component. Canonical edge ordering is indicated in the sketch; canonical
face ordering is given in the table. Polygons and polyhedra intrinsically have no canonical ordering.

edges adjacent to an entity may return nothing, because the implementation has no stored
data to return. For first-order adjacencies that are available in the implementation, the
implementation may store the adjacency information directly, or compute adjacencies by
either a local traversal of the entity’s neighborhood or by global traversal of the entity set.
Each iMesh implementation must provide information about the availability and relative
cost of first-order adjacency queries.

For an entity of dimensiond, second-order adjacencies describe all of the mesh entities
of dimensionq that share any adjacent entities of dimensionb, whered 6= b andb 6= q.
Second-order adjacencies can be derived from first-order adjacencies. Note that, in the
iMesh data model, requests such as all vertices that are neighbors to a given vertex are

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · Carl Ollivier-Gooch et al.

(a) Downward adjacency; edges
adjacent to a face, vertices adja-
cent to an edge.

(b) Upward adjacency: edges ad-
jacent to a vertex, faces adjacent
to an edge.

(c) Second adjacency; red edges
are adjacent to vertices adjacent to
the red face.

Fig. 2. Examples of adjacency relationships between mesh entities.

requests for second-order adjacencies. Figure 2(c) highlights all edges adjacent to vertices
adjacent to the shaded face.

3.2 Entity Sets

The iMesh data model allows arbitrary groupings of entities, calledentity sets. Each entity
set may be a true set (in the set theoretic sense) or it may be a (possibly non-unique) or-
dered list of entities; in the latter case, entities are retrieved in the order in which they were
added to the entity set. An entity set may or may not be a simply-connected computational
mesh; entity sets thataresimple meshes have obvious application in multiblock and multi-
grid contexts, for instance. Entity sets (other than the root set) are populated by addition
or removal of entities from the set. In addition, set Booleanoperations — subtraction,
intersection, and union — on entity sets are also supported.

Two primary relationships among entity sets are supported.First, entity sets may contain
one or more entity sets (by definition, all entity sets belongto the root set). An entity set
contained in another may be either a subset or an element (each in the set theoretic sense)
of that entity set. The choice between these two interpretations is left to the application;
the iMesh component does not impose either interpretation.Set contents can be queried
recursively or non-recursively; in the former case, if entity set A is contained in entity set
B, a request for the contents of B will include the entities inA (and the entities in sets
contained in A). Second, parent/child relationships between entity sets are used to repre-
sent logical relationships between sets, including multigrid and adaptive mesh sequences.
These logical relationships naturally form a directed, acyclic graph.

Examples of entity sets include the ordered list of verticesbounding a geometric face,
the set of all mesh faces that lie on that geometric face, the set of regions assigned to
a single processor by mesh partitioning, and the set of all entities in a given level of a
multigrid mesh sequence.

To be useful to applications, information in the root set or one or more of its constituent
entity sets is assumed to be a valid computational mesh, examples of which include:

—A non-overlapping, connected set of iMesh entities; for example, the structured and
unstructured meshes commonly used in finite element simulations (simple mesh).

—Overlapping grids in which a collection of simple meshes are used to represent some por-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 9

tion of the computational domain, including chimera, multiblock, and multigrid meshes
(multiple mesh). The interfaces presented here handle these mesh types in ageneral
way; higher-level services may be added later to support specific functionalities needed
by these meshes. In this case, each of the simple meshes is a valid computational mesh,
stored as an entity set.

—Adaptive meshes in which all entities in a sequence of refined (simple or multiple)
meshes are retained in the root set. The most highly refined adaptation level typically
comprises a simple or multiple mesh. Typically, different levels of mesh adaptation will
be represented by different entity sets, with many of the entities shared by multiple entity
sets.

—Smooth particle hydrodynamic (SPH) meshes, which consistof a collection of iMesh
vertices with no connectivity or adjacency information.

3.3 Tags

Tags are used as containers for user-defined data that can be attached to iMesh entities and
entity sets. Different values of a particular tag can be associated with different entities
or sets; for instance, a boundary condition tag will have different values for an inflow
boundary than for a no-slip wall, and no value at all for facesin the interior of the mesh.
In the general case, iMesh tags do not have a predefined type and allow the user to attach
arbitrary data to mesh entities; this data is stored and retrieved by implementations as a
bit pattern. To improve performance and ease of use, we support three specialized tag
types: integers, doubles, and handles. These typed tags enable an iMesh implementation
to correctly save and restore tag data when a mesh is written to a file.

4. INTERFACE FUNCTIONALITY

The iMesh interface supports a variety of commonly needed functionalities for mesh and
entity query, mesh modification, entity set operations, andtags. All data passed through
the interface is in the form of opaque handles to objects defined in the data model. In this
section we describe the functionality available through the iMesh interface.3 For a simple
usage example, in both C and Fortran, see Appendix A.

4.1 Global Queries

Global query functions can be categorized into two groups: 1) database functions, that
manipulate the properties of the database as a whole and 2)set query functions, that query
the contents of entity sets as a whole; these functions require an entity set argument, which
may be the root set. These functions are summarized in Table I.

Database functions include functions to create and destroymesh instances; note that the
create function only sets up data structures for the mesh instance, which must be filled by
reading data from a file or by creating a mesh entity by entity.The load and save functions
read and write mesh information from files; file format and read/write options are imple-
mentation dependent. As mesh data is loaded, entities are stored in the root set, and can
optionally be placed into a subsidiary entity set as well. iMesh implementations must be
able to provide coordinate information in both blocked (xxx...yyy...zzz...) and interleaved

3Note that these descriptions do not include detailed syntax, which can be found in the interface user guide [Chand
et al. 2007a; 2007b]. Also, note that all function names in the interface are prepended by iMesh_; this prefix is
omitted in the tables in this paper for compactness.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · Carl Ollivier-Gooch et al.

Table I. Functions for Global Queries. (All function names are prepended with iMesh_.)
Function Description

newMesh Creates a new, empty mesh instance

dtor Destroys a mesh instance

load Loads mesh data from file into entity set

save Saves data from entity set to file

getRootSet Returns handle for the root set

getGeometricDim Returns geometric dimension of mesh

getDfltStorage Tells whether implementation prefers blocked or interleaved coordinate data

getAdjTable Returns table indicating availability and cost of entity adjacency data

areEHValid Returns true if EH remain unchanged since last user-requested status reset

getNumOfType Returns number of entities of type in ES

getNumOfTopo Returns number of entities of topo in ES

getAllVtxCoords Returns coords of all vertices in the set and all vertices on the closure of higher-

dimensional entities in the set; storage order can be user-specified

getEntities Returns all entities in ES of the given type and topology

getAdjEntities For all entities of given type and topology in ES, return adjacent entities of

adj_type

getAllVtxCoords For all vertices, return coords; storage order can be user-specified.

getVtxArrCoords For all input vertex handles, return coords; storage order can be user-specified.

getVtxCoordIndex For all entities of given type and topology, find adjacent entities of adj_Type,

and return the coordinate indices for their vertices. Vertex ordering matches that

in getAllVtxCoords.

(xyzxyzxyz...) formats; an application can query the implementation to determine the im-
plementation’s preferred storage order. Also, implementations must provide information
about the availability and relative cost — constant time look-up, local mesh traversal, geo-
metric search of the entire mesh, or exhaustive search of theentire mesh — of computing
adjacencies between entities of different types. Finally,each mesh instance must provide a
handle for the root set.

Set query functions allow an application to retrieve information about entities in a set.
The entity set may be the root set, which will return selectedcontents of the entire database,
or may be any subsidiary entity set. For example, functions exist to request the number of
mesh entities of a given type or topology; the types and topologies are defined as enu-
merations. Applications can request handles for all entities of a given type or topology or
handles for entities of a given type adjacent to all entitiesof a given type or topology. Also,
vertex coordinates are available in either blocked or interleaved order. Coordinate requests
can be made for all vertices or for the vertex handles returned by an adjacency call. Finally,
indices into the global vertex coordinate array can be obtained for both entity and adjacent
entity requests.

4.2 Entity- and Array-Based Query

The global queries described in the previous section are used to retrieve information about
all entities in an entity set. While this is certainly a practical alternative for some types of
problems and for small problem size, larger problems or situations involving mesh modifi-
cation require access to single entities or to blocks of entities. The iMesh interface supports
traversal and query functions for single entities and for blocks of entities; the query func-
tions supported are entity type and topology, vertex coordinates, and entity adjacencies.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 11

Table II. Functions for Single Entity Queries. (All function names are prepended with iMesh_.)
Function Description

initEntIter Create an iterator to traverse entities of type and topo in ES; return true if any

entities exist

getNextEntIter Return true and a handle to next entity if there is one; false otherwise

resetEntIter Reset iterator to restart traverse from the first entity

endEntIter Destroy iterator

getType Return type of entity

getTopo Return topology of entity

getVtxCoord Return coordinates of a vertex

getEntAdj Return entities of given type adjacent to EH

getEnt2ndAdj Return entities of given type adjacent to entities of a second type adjacent to EH

Table III. Functions for Block Entity Queries. (All function names are prepended with iMesh_.)
Function Description

initEntArrIter Create a block iterator to traverse entities of type and topoin ES

getNextEntArrIter Return true and a block of handles if there are any; false otherwise

resetEntArrIter Reset block iterator to restart traverse from the first entity

endEntArrIter Destroy block iterator

getEntArrType Return type of each entity

getEntArrTopo Return topology of each entity

getEntArrAdj Return entities of type adjacent to each EH

getEntArr2ndAdj Return entities of given type adjacent to entities of a second type adjacent to

each EH

Table IV. Functions for Single Entity Mesh Modification. (All function names are prepended with iMesh_.)
Function Description

createVtx Create vertex at given location

setVtxCoords Changes coordinates of existing vertex

createEnt Create entity of given topology from lower-dimensional entities; return entity

handle and creation status

deleteEnt Delete EH from the mesh

Blocks of data are passed through the interface using arraysof entity handles. Tables II
and III summarize these functions.

4.3 Mesh Modification

The iMesh interface supports mesh modification by providinga minimal set of operators
for low-level modification; both single entity (see Table IV) and block versions (see Ta-
ble V) of these operators are provided. High-level functionality, including mesh generation,
quality assessment, and validity checking, can in principle be built from these operators, al-
though in practice such functionality is more likely to be provided using intermediate-level
services that perform complete unit operations, includingvertex insertion and deletion with
topology updates, edge and face swapping, and vertex smoothing.

Geometry modification is achieved through functions that change vertex locations. Ver-
tex locations are set at creation, and can be changed as required, for instance, by mesh
smoothing or other vertex movement algorithms.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · Carl Ollivier-Gooch et al.

Table V. Functions for Block Mesh Modification. (All function names are prepended with iMesh_.)
Function Description

createVtxArr Create vertices at given location

setVtxArrCoords Changes coordinates of existing vertices

createEntArr Create entities of given topology from lower-dimensional entities; return entity

handle and status

deleteEntArr Delete each EH from the mesh

Mixed−order
Bezier

Mixed−order
LagrangeLagrange

Bezier

Fig. 3. Examples of high-order, curved mesh entities

Topology modification is achieved through the creation and deletion of mesh entities.
Creation of higher-dimensional entities requires specification, in canonical order, of an
appropriate collection of lower-dimensional entities. For instance, a tetrahedron can be
created using four vertices, six edges or four faces, but notfrom combinations of these.
Upon creation, adjacency information properly connectingthe new entity to its compo-
nents is set up by the implementation. Some implementationsmay allow the creation of
duplicate entities (for example, two edges connecting the same two vertices), while others
will respond to such a creation request by returning a copy ofthe already-existing entity.

Deletion of existing entities must always be done from highest to lowest dimension, be-
cause the iMesh interface forbids the deletion of an entity with existing upward adjacencies
(for instance, an edge that is still in use by one or more facesor regions).

4.4 Entity Shape

Information about the shape of mesh entities is essential for support of high order accurate
solution techniques. Complicating matters is the fact thatrepresentations of curved mesh
entities can be formulated in more than one way, including interpolation, approximation,
analytic forms, and CAD data. In each of these formulations,however, point-wise geo-
metric information is typically used to build up the required higher-order shapes of mesh

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 13

Table VI. Functions for High-Order Entity Shape. (All function names are prepended with iMesh_.)
Function Description

hasMeshShapes Determine with the mesh contains high order shapes of given shape type

createMeshShapes Create higher order shapes with the specified shape type and order for the mesh

hasEntShape Determine with an entity has high order shapes of given shapetype

getEntShapeOrder Get the order of the higher order mesh entity shape

createEntShapes Create high order shapes for a single entity

deleteEntShapes Delete high order nodes for an entity

getEntShapes Return high order nodes for an entity

setVtxParam Set parametric coordinates of high order node

getVtxParam Get parametric coordinates of high order node

setNodeToEnt Associate a high order node with a mesh entity

getEntOfNode Return the mesh entity associated with a high order node

hasEntArrShape Determine whether an array of entities have high order shapes of given shape

type

getEntArrShapeOrder Get the order of the high order mesh entity shape for multipleentities

createEntArrShapes Create high order shapes for multiple entities

deleteEntArrShapes Delete high order nodes for entities

getEntArrShapes Return high order nodes for entities

setVtxArrParam Set parametric coordinates of high order nodes

getVtxArrParam Get parametric coordinates of high order nodes

setNodeArrToEnt Associate high order nodes with mesh entities

getEntArrOfNode Return the mesh entities associated with high order nodes

entities. For example, Figure 3 shows the Lagrange interpolating and Bezier approximat-
ing shapes for mesh entities with constant or variable orders with a set of nodes used to
represent the higher-order shape for mesh edges and faces.

iMesh support for curved mesh entities focuses on specifying which form of geomet-
ric approximation is in use — so that an application capable of handling multiple types
can distinguish between them — and the locations of the control points. Mesh shape
functionality is designed to make common usage — notably equal-order Lagrange finite
elements — easy, while still allowing less common, more complicated usage — such as
p-refinement, or spectral elements, for instance. As such, global functions exist for initial-
izing mesh entity shapes across the entire mesh, including not only creation of high-order
nodes but initialization of their locations. At a more fine-grained level, nodes can be cre-
ated in the same way as ordinary vertices (i.e., through a call to iMesh_createVtx[Arr])
and associated with higher-dimensional entities either entity-by-entity or node-by-node.
For equal order entities, creation of and access to all high order nodes for a mesh entity
and its closure (for example, all the nodes for a 27-node hexahedron) can be handled in
a single call. Mixed-order elements require a lower-level approach from the application,
but we expect that writers ofp-refined finite-element solvers will have the expertise for
this. Finally, adjacency information for high-order nodes— such as the identities of all
hexahedra incident on a mid-edge node — is accessed by first finding the mesh entity that
a node is associated with, and then finding adjacencies for that entity. The iMesh functions
providing this functionality are summarized in Table VI.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · Carl Ollivier-Gooch et al.

Table VII. Functions for Basic Entity Set Functionality. (All function names are prepended with iMesh_.)
Function Description

createEntSet Creates a new entity set (ordered and non-unique if isList istrue)

destroyEntSet Destroys existing entity set

isList Return true if the set is ordered and non-unique

getNumEntSets Returns number of entity sets contained in SH

getEntSets Returns entity sets contained in SH

addEntSet Adds entity set SH1 as a member of SH2

rmvEntSet Removes entity set SH1 as a member of SH2

isEntSetContained Returns true if SH2 is a member of SH1

addEntToSet Add entity EH to set SH

rmvEntFromSet Remove entity EH from set SH

addEntArrToSet Add array of entities to set SH

rmvEntArrFromSet Remove array of entities from set SH

isEntContained Returns true if EH is a member of SH

Table VIII. Functions for Entity Set Relationships. (All function names are prepended with iMesh_.)
Function Description

addPrntChld Create a parent (SH1) to child (SH2) relationship

rmvPrntChld Remove a parent (SH1) to child (SH2) relationship

isChildOf Return true if SH2 is a child of SH1

getNumChld Return number of children of SH

getChldn Return children of SH

getNumPrnt Return number of parents of SH

getPrnts Return parents of SH

4.5 Entity Sets

Entity set functionality in the iMesh interface is divided into three parts: basic set func-
tionality, hierarchical set relations, and set Boolean operations.

Basic set functionality, summarized in Table VII, includescreating and destroying entity
sets; adding and removing entities and sets; and several entity set specific query functions.4

Entity sets can be either ordered and non-unique, or unordered and unique; an ordered set
guarantees that set query results (including traversal) will always be given in the order in
which entities were added to the set. The ordered/unorderedstatus of an entity set must be
specified when the set is created and can be queried.

Entity sets are created empty. Entities can be added to or removed from the set individ-
ually or in blocks; for ordered sets, the last of a number of duplicate entries will be the
first to be deleted. Also, entity sets can be added to or removed from each other; note that,
because all sets are automatically contained in the root setfrom creation, calls that would
add or remove a set from the root set are not permitted. An entity set can also be queried
to determine the number and handles of sets that it contains,and to determine whether a
given entity or set belongs to that set.

Hierarchical relationships between entity sets are intended to describe, for example,
multilevel meshes and mesh refinement hierarchies. The directional relationships implied

4Note that the global mesh query functions (Section 4.1) and traversal functions (Section 4.2) defined above can
be used with the root set or any other entity set as their first argument.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 15

Table IX. Functions for Entity Set Boolean Operations. (Allfunction names are prepended with iMesh_.)
Function Description

subtract Return set difference SH1-SH2 in SH

intersect Return set intersection of SH1 and SH2 in SH

unite Return set union of SH1 and SH2 in SH

here are labeled as parent-child relationships in the iMeshinterface. Functions are provided
to add, remove, count, and identify parents and children andto determine if one set is a
child of another; see Table VIII.

Set Boolean operations — intersection, union, and subtraction — are also defined by the
iMesh interface; these functions are summarized in Table IX. The definitions are intended
to be compatible with their C++ standard template library (STL) counterparts, both for
semantic clarity and so that STL algorithms can be used by implementations where appro-
priate. All set Boolean operations apply not only toentity members of the set, but also
to setmembers. Note that set hierarchical relationships are not included: the set result-
ing from a set Boolean operation on sets with hierarchical relationships willnot have any
hierarchical relationships defined for it, regardless of the input data. For instance, if one
were to take the intersection of two directionally-coarsened meshes (stored as sets) with
the same parent mesh (also a set) in a multigrid hierarchy, there is no reason to expect that
the resulting set will necessarily be placed in the multigrid hierarchy at all. On the other
hand, if both of those directionally-coarsened meshes contain a set of boundary faces, then
their intersection will contain that set as well.

While set Boolean operations are completely unambiguous for unordered entity sets,
ordered sets make things more complicated. For operations in which one set is ordered
and one unordered, the result set is unordered; its contentsare the same as if an unordered
set were created with the (unique) contents of the ordered set and the operation were then
performed. In the case of two ordered sets, the iMesh specification tries to follow the spirit
of the STL definition, with complications related to the possibility of multiple copies of a
given entity handle in each set. We recognize that these rules are somewhat arbitrary, but
have been unable to find a more systematic way of defining theseoperations for ordered
sets. In the following discussion, assume that a given entity handle appearsm times in the
first set andn times in the second set.

—For intersection of two ordered sets, the output set will contain min(m,n) copies of
the entity handle. These will appear in the same order as in the first input set, with
the first copies of the handle surviving. For example, intersection of the two setsA =
{ abacdbca} and B = {dadbac} will result in A

⋂

B = {abacd}.

—Union of two ordered sets is easy: the output set is a concatenation of the input sets:
A

⋃

B = {abacdbcadadbac}.

—Subtraction of two ordered sets results in a set containingmin(m−n,0) copies of an
entity handle. These will appear in the same order as in the first input set, with the first
copies of the handle surviving. For example,A−B= {abc}.

Regardless of whether the entity members of an entity set areordered or unordered, the
set members are always unordered and unique, with correspondingly simple semantics for
Boolean operations.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · Carl Ollivier-Gooch et al.

Table X. Basic Tag Functions. (All function names are prepended with iMesh_.)
Name Description

createTag Creates a new tag of the given type and number of values

destroyTag Destroys the tag if no entity is using it or if force is true

getTagName Returns tag ID string

getTagSizeValues Returns tag size in number of values

getTagSizeBytes Returns tag size in number of bytes

getTagHandle Return tag with given ID string, if it exists

getTagType Return data type of this tag

getAllTags Return handles of all tags associated with entity EH

getAllEntSetTags Return handles of all tags associated with entity set SH

Table XI. Setting, Getting, and Removing Tag Data. (All function names are prepended with iMesh_.)
Function Description

setData The value in tag TH for entity EH is set to the first tagValSize bytes of the

array<char> tagVal

setArrData The value in tag TH for entities in EHarray[i] is set using data in the array<char>

tagValArray and the tag size

setEntSetData The value in tag TH for entity set SH is set to the first tagValSize bytes of the

array<char> tagVal

set[Int,Dbl,EH]Data The value in tag TH for entity EH is set to the int, double, or entity handle in

tagVal; array and entity set versions also exist.

getData Return the value of tag TH for entity EH

getArrData Retrieve the value of tag TH for all entities in EH array, withdata returned as an

array of tagVal’s

getEntSetData Return the value of tag TH for entity EH

get[Int,Dbl,EH]Data Return the value of tag TH for entity EH; array and entity set versions also exist.

rmvTag Remove tag TH from entity EH

rmvArrTag Remove tag TH from all entities in EH array

rmvEntSetTag Remove tag TH from entity set SH

4.6 Tags

Tags are used to associate application-dependent data witha mesh, entity, or entity set.
Basic tag functionality defined in the iMesh interface is summarized in Table X, while
functionality for setting, getting, and removing tag data is summarized in Table XI.

When creating a tag, the application must provide its data type and size, as well as
a unique name. For generic tag data, the tag size specifies howmany bytes of data to
store; for other cases, the size tells how many values of thatdata type will be stored. The
implementation is expected to manage the memory needed to store tag data. The name
string and data size can be retrieved based on the tag’s handle, and the tag handle can be
found from its name. Also, all tags associated with a particular entity can be retrieved; this
can be particularly useful in saving or copying a mesh.

Initially, a tag is not associated with any entity or entity set, and no tag values exist;
association is made explicitly by setting data for a tag-entity pair. Tag data can be set
for single entities, arrays of entities (each with its own value), or for entity sets. In each
of these cases, separate functions exist for setting generic tag data and type-specific data.
Analogous data retrieval functions exist for each of these cases.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 17

Table XII. Error Handling Functionality. (All function names are prepended with iMesh_.)
Name Description

getDescription Retrieves error description

When an entity or set no longer needs to be associated with a tag — for instance, a
vertex was tagged for smoothing and the smoothing operationfor that vertex is complete
— the tag can be removed from that entity without affecting other entities associated with
the tag. When a tag is no longer needed at all — for instance, when all vertices have been
smoothed — the tag can be destroyed through one of two variantmechanisms. First, an
application can remove this tag from all tagged entities, and then request destruction of the
tag. Simpler for the application is forced destruction, in which the tag is destroyed even
though the tag is still associated with mesh entities, and all tag values and associations are
deleted. Some implementations may not support forced destruction.

4.7 Error Handling

Like any API, the iMesh interface is vulnerable to errors, either through incorrect input or
through internal failure within an implementation. For instance, it is an error for an appli-
cation to request entities with conflicting types and topologies. Also, an error in the imple-
mentation occurs when memory for a new object cannot be allocated. The iMesh interface
defines a number of standard error conditions which could occur in iMesh functions, either
because of illegal input or internal implementation errors; each of these error conditions
has an accompanying description, which can be retrieved by calling iMesh_getDescription,
summarized in Table XII.

4.8 Compliance Testing

To ensure consistency between implementations and to assist users developing partial im-
plementations based on their own mesh data structures, we have developed a comprehen-
sive compliance test suite for the iMesh interface. When testing a full implementation of
the interface, the test suite uses the iMesh implementationto read a mesh file, then tests
each interface function. These tests are typically done by comparing information retrieved
in multiple ways — for instance, retrieving coordinate information in both blocked and
interleaved order, or retrieving adjacency information entity-by-entity or for all entities of
a given type. The set and tag functions can be easily tested bycreating sets or tags in
the test code and querying the new sets and tags to verify their correctness. We are cur-
rently working on a function-level compliance testing, so that users wishing to use a single
iMesh-based service can implement and test only the functions required for that service.
This fine-grained testing is much more difficult, because consistency between different
calls can no longer be relied on. The combination of these twotest suites will ensure that
different iMesh implementations have the same behavior, and that applications can rely on
correct interaction with iMesh services.

4.9 Fortran Compatibility

For compatibility with the Fortran convention that functions returning values do not mod-
ify their arguments, no iMesh function returns a value. Thatis, all iMesh functions are C
void functions or Fortran subroutines. Also, string arguments in the C API have an accom-
panying argument giving their length; these string length arguments are added at the end

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 · Carl Ollivier-Gooch et al.

of the argument list in the order the strings appear. Finally, the iMesh API requires the use
of a Fortran compiler that supports the common pass-by-value extension.

5. USAGE EXAMPLES

In this section, we provide several examples of using the iMesh component, including
finite element simulation, mesh modification, mesh partitioning, and visualization. Each
of these services has been demonstrated to work with multiple implementations of the
iMesh component API, and — where efficiency data are available — the overhead of using
the iMesh API rather than a native implementation is quite small.

5.1 Existing iMesh Implementations

Before discussing applications of the iMesh interface, we will summarize the status of the
existing iMesh implementations. Our consortium has produced four complete implemen-
tations of the iMesh interface based on our pre-existing mesh databases. Each of the four
supports all standard finite element topologies — hexahedra, tetrahedra, prisms, pyramids,
triangles, and quadrilaterals. Each of the four has its own particular strengths and areas of
most frequent application.

—The Flexible Mesh DataBase (FMDB) [Remacle and Shephard 2003] is designed es-
pecially to handle adaptively changing mesh data, including flexible storage of adja-
cency information. Application usage of FMDB includes computational fluid dynamics
(CFD), fusion, and accelerator simulations.

—The Mesh Oriented datABase (MOAB) [Tautges et al. 2004] is particularly efficient in
its memory management. Application usage for MOAB includesnuclear reactor mod-
eling, neutron transport, and accelerator design optimization.

—The Generation and Refinement of Unstructured Mixed-element Meshes in Parallel
(GRUMMP) [Ollivier-Gooch 2005] toolkit is designed for tri/tet mesh generation, im-
provement, and adaptation, and is particularly efficient inretrieving adjacency infor-
mation. Application usage is primarily in CFD, especially aerodynamics and non-
Newtonian fluid dynamics.

—The Pacific Northwest National Laboratory’s NWGRID [Trease and Trease 2004] is
intended for adaptive mesh refinement, especially for simplicial meshes. Application
usage includes computational biology, CFD, solid mechanics, and subsurface transport
modeling.

5.2 A Simple Finite Element Solver

To demonstrate the cost of using the iMesh interface in a typical computational science ap-
plication, we developed a simple finite element applicationthat solves a diffusion problem
in two dimensions on the unit square:

∇(k∇u(x,y)) = f (1)

u(x = 0) = 0 u(x = 1) = 1 ux(y = 0) = 0 ux(y = 1) = 0. (2)

The finite element solver uses linear triangular elements and exact integration rules. The
finite element solver is written in C and uses PETSc to solve the linear systems.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 19

Table XIII. iMesh functions used in the simple finite elementsolver for different mesh data access
Array Access Entity Iterator Workset Iterator

getRootSet getRootSet getRootSet

getTagHandle getTagHandle getTagHandle

getVtxCoordIndex initEntIter initEntArrIter

getAllVtxCoords getNextEntIter getNextEntArrIter

getEntities getEntAdj getEntArrAdj

getIntArrData getVtxCoord getVtxArrCoords

getDblArrData getIntData getIntArrData

getDblArrData getDblArrData

We focus our attention on setting up the linear system and consider four different options
for accessing the mesh data: 1) through the native data structures, 2) through array-based
mechanisms defined in the iMesh interface, 3) through entityiterators, and 4) through
workset iterators. The native mesh data structures use linked lists to store the vertex and
element information. Each vertex data structure includes its coordinate information, its
global id, and an integer boundary flag. Each element data structure includes downward
adjacency information to vertices, a global id, and the element area which is computed
when the mesh is initialized. To access this same information through the iMesh interface
requires copying data into arrays as needed and storing global ids, boundary flags, and
element areas as tags. In particular, we make use of the iMeshfunctions given in Table
XIII for cases 2)-4). In all cases, we must obtain the root setfrom the iMesh instance and
get the tag handles for the global ids, boundary flags and element areas. In the case of
array access, we obtain a lists of all the vertex and face entities in the mesh and can obtain
the tag data as arrays of sizenum_vtxor num_elem. We can obtain the vertex coordinate
information and element connectivity information using these entity arrays or, as we did in
this example, directly from the mesh data base. It is guaranteed by the iMesh interface that
the information returned using these array-based calls will be have a consistent ordering
across all calls. The iMesh calls used for the entity and workset iterators provide the same
functionality on either an entity-by-entity basis or on an array-basis of entities. In each
case, we initialize the iterator to return mesh faces and getentity information through the
getNextEnt(Arr)Iter function. For each entity (array) returned, we obtain the downward
vertex adjacency information, the vertex coordinates, andneeded global id, boundary, and
element area tag data.

We ran each case 10 times and report the average time requiredto set up the linear system
in microseconds, along with the percentage increase in costcompared to the use of native
data structures, in Table XIV. In the case of the workset iterator, we used workset sizes of
1, 3, 5, 10 and 20. This is a small problem size; the total number of elements in the mesh is
300, so these worksets represent .3%, 1%, 1.6%, 3.3%, and 6.6% of the total problem size,
respectively. Not surprisingly, the array based access to the vertex and element information
has the least amount of overhead. Even with the cost of copying the data into the array
structures, the small number of function calls (9 total) results in an overhead of only 2.8%.
Entity iterators are perhaps the most natural to program, but result in the highest overhead
costs due to the very large number of function calls (10+ 3 · (ne+ ne ·nv)+ 4 ·nv), where
ne is the number of elements andnv is the number of vertices. The workset iterator cases
decrease in cost as the workset size grows and number of function calls decreases; in this
case, the total number of iMesh function calls is 10+ 6∗ne/ |WS|+ 4∗nv/ |WS|, where

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

20 · Carl Ollivier-Gooch et al.

|WS| is the size of the work set.
WOULD LIKE TO RUN LARGER PROBLEM SIZE AND CASES WITH GRUMMP

AND MOAB BUT THIS IS THE BASIC IDEAQTORNCLW

Table XIV. Timing results for the 2D linear finite element solver using the SimpleMesh implementation of the
iMesh interface.

Case Time (µs) (T−Tnative)
Tnative

×100

Native 10479 –
Array-based 10774 2.8%
Entity Iterator 11642 11.1%
Workset Iterator (1) 11351 8.3%
Workset Iterator (3) 11183 6.7%
Workset Iterator (5) 11119 6.1%
Workset Iterator (10) 11095 5.8%
Workset Iterator (20) 11094 5.8%

5.3 Mesh Quality Improvement via Vertex Movement

The MESh QUality Improvement Toolkit (Mesquite)[Brewer etal. 2003] improves the
accuracy of mesh-based simulations through optimization of the mesh vertex locations.
Mesquite can be used for element shape optimization, r-adaptivity, mesh alignment, etc.,
and has been tested with the MOAB, FMDB, GRUMMP and NWGRID iMesh implemen-
tations.

As input Mesquite requires an iMesh instance and entity set handle designating the sub-
set of the mesh over which to perform the optimization. If theentity set handle is the
root set, optimization is done for the entire mesh. Further,Mesquite expects an integer tag
indicating whether the corresponding vertex may be moved during optimization. Gener-
ally, boundary vertices are marked as fixed or otherwise constrained to the computational
domain boundary to ensure correct problem formulation. While there is some variation
in iMesh functionality requirements in the different Mesquite solvers, all Mesquite opti-
mization algorithms require iteration over elements and vertices contained in an entity set,
element-vertex adjacency queries, entity set creation andmodification,5 vertex coordinate
query and modification, and tag data query. These capabilities are sufficient to support
Mesquite’s global element shape optimizer; a sample input mesh is shown in Figure 4(a)
with the corresponding output mesh in Figure 4(b). When optimizing a single vertex or
subsets of mesh vertices, iMesh implementation must also efficiently determine the ele-
ments adjacent to a vertex. Output results were identical for both the global and Laplacian
smoothers, and for data access using Mesquite’s native meshrepresentation and via the
iMesh interface.

Mesquite is also capable of optimizing to obtain specific characteristics of the mesh on
an element-by-element basis using target matrices. These pre-calculated target matrices
are stored as iMesh tag data on the mesh elements and retrieved during optimization. For
example, Figure 4(c) is the result of optimizing the same input mesh given previously,
except that target matrices are used to preserve the size andaspect ratio of the elements.

5This is an artifact of early versions of both Mesquite and theiMesh interface. The Mesquite-iMesh interaction
code could be updated to remove the need for this capability.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 21

(a) Initial mesh (b) Optimized mesh (c) Optimized mesh using target
matrix optimization

Fig. 4. Element shape optimization using Mesquite.

(a) Initial mesh

(b) Deformed mesh

(c) Optimized mesh

Fig. 5. Deforming boundary optimization using Mesquite.

Table XV. CPU Time (seconds) for optimization of 40,000 element meshes.
Optimizer Internal iMesh

MOAB GRUMMP
Global shape optimization 45.38 45.16 45.16
Laplacian smoother 111.60 472.65 —
Target matrix optimization 79.30 82.65 89.38
Deforming boundary 12.73 15.48 21.59

Another example is shown in Figure 5 in which element aspect ratio is preserved while
updating the mesh for a deforming mesh boundary. An initial anisotropic mesh, shown in
Figure 5(a), is used to calculate the target matrices. Figure 5(b) shows the same mesh after
boundary deformation, with some elements inverted due to the change in location of the
boundary vertices. This mesh (with the stored target matrices) is the input to the Mesquite
optimizer. The resulting mesh, with the element anisotropypreserved, is shown in Figure
5(c).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

22 · Carl Ollivier-Gooch et al.

Table XVI. Performance for the iMesh swapping service for a supersonic aircraft mesh (251,140 tetrahedra).
Native iMesh implementations

(non-iMesh) GRUMMP FMDB MOAB

Swaps 25,448 28,629 27,811 27,592
Rate

(

1
sec

)

3,380 2,800 223 122
Memory (MB) 216 MB 292 MB 622 MB 110 MB

Table 5.3 shows the impact of the iMesh interface and implementation on optimizer
performance.6 Each row of the table corresponds to one of the examples abovewith the
mesh interval size reduced by a factor of ten, resulting in meshes with 40,000 elements.

The global shape optimization results demonstrate one of the advantages of using a mesh
database library over a custom storage scheme. The more compact representation of data
in the iMesh implementations results in a slight performance improvement over Mesquite’s
internal mesh representation. The Laplacian smoothing times emphasize the overhead of
a standard interface and generalized mesh database. The smoothing calculation is trivial.
The time spent in tens of millions of queries for small amounts of data (adjacencies, tag
data, vertex coordinates, etc.) dominates the run time of the optimization.

The latter two rows in Table 5.3 demonstrate the run time costof accessing tag data.
The time spend accessing other mesh data is the same as for theglobal shape optimization
case. The difference in run time for each mesh database is entirely a function of the time
spend querying target matrices stored in tag data.

5.4 Mesh Quality Improvement via Topology Optimization

Local mesh topology optimization can be a powerful tool for improving the quality of
unstructured meshes; however, mesh topology modification —often referred to as swap-
ping — is difficult enough to implement that an iMesh-based service that performs these
operations would be useful for many applications. The classic face and edge swapping op-
erations (see, for instance, [Freitag and Ollivier-Gooch 1997] for a description) have been
implemented using the iMesh API [Ollivier-Gooch 2006; 2008].

The swapping service represents a worst-case scenario for efficiency tests for the iMesh
interface, in that the service requires fine-grained accessto and modification of the mesh
database using the interface. As such, the swapping servicemakes a large number of calls
through the interface, each returning a small amount of data. Specifically, the swapping
service uses the iMesh entity iterators, adjacency queries, array-based vertex coordinate
queries, checks for entity type and topology, and entity creation and deletion functions.
Optionally, the swapping service can also be restricted to reconfigure only tetrahedra that
are members of a given set, requiring the ability to query setmembership and to assign
new entities to sets. A second optional functionality is theability to accept a tag and tag
value to indicate which faces within a set should be considered for swapping.

The swapping service has been tested with three different iMesh implementations: GRUMMP,
MOAB, and FMDB, and the results compared with an implementation of the same algo-
rithms using the GRUMMP back-end (referred to asnative). For testing purposes, we
use a mesh for a supersonic aircraft initially containing 251,140 tetrahedra. Because of

6The iMesh implementation in GRUMMP does not yet support vertex-to-element adjacency queries for surface
meshes, so it was not possible to run this Laplacian smoothing example with the GRUMMP iMesh implementa-
tion.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 23

Fig. 6. Breakdown of relative CPU time for the swapping service with three different iMesh implementations

differences in the order in which faces are accessed, outputmeshes from the iMesh swap-
ping service are not identical but we have confirmed elsewhere [Ollivier-Gooch 2008] that
the meshes have statistically indistinguishable quality.Table XVI contains the number
of swaps performed, the swapping rate, and the memory used for each implementation.
The CPU time overhead for using the GRUMMP iMesh implementation rather than the
native implementation is about 20% for this case; the 40% overhead in memory usage is
required to support certain forms of entity creation that are not supported natively by the
mesh database. The results for this case clearly show that the designers of the FMDB and
MOAB mesh databases made different trade-offs in deciding what data to store and how.
MOAB was designed for low memory usage — less than 40% of the memory usage of the
next smallest database here. FMDB was designed for parallelperformance and flexibility,
neither of which are required by this service. Figure 6 showsrelative CPU time for each
implementation, broken down into the time spent in the swapping service itself; retrieving
adjacency information; retrieving coordinate information; performing mesh modifications;
reading and pre-processing mesh data; and manipulating iterators. The difference in rela-
tive cost for the swapping service reflects the difference intotal CPU time, as the absolute
time for the driver varies by only about 10% between implementations. The most sig-
nificant differences in overall performance are clearly in adjacency retrieval and iterators.
Optimization of these routines would no doubt improve theirperformance significantly for
this service and others that use the iMesh interface similarly. This case also illustrates
clearly that efficient implementation of iMesh functions that are used heavily by a service
is essential for good run-time performance.

5.5 A Partitioning Service

As a precursor to our ongoing work for a parallel extension tothe iMesh interface, an
iMesh-based service that performs partitioning would be useful. Partitioning distributes
data over sets of processors and is needed by unstructured and/or adaptive parallel appli-
cations. Many of the partitioning methods in Zoltan [Boman et al. 2007] have been made
available in a service that uses the iMesh API to access mesh data. The partitioners avail-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

24 · Carl Ollivier-Gooch et al.

able can be grouped into three categories; simple partitioners for testing and demonstration,
geometric or coordinate-based partitioners, and graph partitioning.

For the simple partitioners, the partitioning service usesthe iMesh queries for entities
and number of entities. The partition service can operate atthe level of any mesh entity (i.e.
vertex, edge, face, or region). The partitioning service uses both single-entity and array-
of-entities access to mesh data. For the geometric partitioners, the partitioning service uses
the iMesh single-entity adjacency queries and array-basedvertex coordinate queries. For
graph partitioning, the partitioning service uses the array-based adjacency queries.

The partition data is stored by both attaching an integer tagto each mesh entity and
collecting entities into sets with integer tags. Any old partition data is destroyed before
new partition data is created. The partition service uses entity set query, deletion, and
creation functions as well as the ability to assign new entities to sets and get, destroy,
create, and set tag data.

The partitioning service has been tested and is interoperable with three mesh database
implementations available through the iMesh C interface: MOAB, FMDB, and GRUMMP.
Users need only link in the desired implementation; no otherchanges are necessary. A
partitioning service interfacing directly to MOAB performs only slightly faster than the
partitioning service interfacing to MOAB through iMesh. Topartition a mesh with 1.4
million faces by faces using recursive coordinate bisection, the MOAB native implemen-
tation required 37.2 seconds, while using the ITAPS C interface to access the MOAB data
structures required 38.2 seconds (2.5% overhead).

5.6 Visualization Using the iMesh Interface

Visualization and interactive manipulation of meshes as well as fields defined on meshes is
important in many aspects of simulation software development. Towards this end, we have
developed a VisIt [Childs et al. 2005] plugin that accesses mesh and solution data through
an iMesh implementation. We have demonstrated that the current plugin is interoperable
across three different iMesh implementations: GRUMMP, MOAB and FMDB. The plugin
uses array-based vertex coordinate queries. Solution datais retrieved using iMesh tag ca-
pabilities. In addition, the plugin uses recursive entity set queries to map an iMesh entity
set hierarchy to a roughly equivalent VisIt construct called asubset inclusion lattice. This
enables VisIt to provide intuitive GUI controls to users in terms of subsets that are charac-
teristic to various stages of their design and analysis workflows. For example, users often
need to focus their attention on a specific part in the original CAD model, a specific regime
in the material model, or a specific discretization region inthe numerical model. The abil-
ity for users to interactively visualize, query, calculateand otherwise analyze data in terms
of characteristic subsets such as these both within and across each stage of a design and
analysis workflow fundamentally enhances the flexibility ofthe analysis activities possible
within the VisIt visualization tool.

5.7 Size Field-Based Mesh Adaptation

Adaptive methods are central to ensuring the accuracy and reliability of simulation results.
One approach to supporting mesh adaptation is to provide a service that can take an existing
mesh with a new mesh size field associated with it and create the desired adapted mesh by
applying appropriate mesh modification operations. Such a service for anisotropic mesh
adaptation has been under development of a number of years [Li et al. 2005]. To ensure
the ability to deal with general curved geometries that can come from CAD systems, the

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 25

(a) Before refinement (408 regions) (b) After refinement (36,261 regions)

Fig. 7. An example of size field-based mesh adaptation.

service builds on a generalized interaction with the geometric model [Beall et al. 2004]
and ensures the mesh can properly represent the domain of interest [Li et al. 2003]. This
service has been used to construct adaptive simulation procedures by combining it with
finite element and finite volume solvers, and associated error indicators. Since the mesh
adaptation service works off a general anisotropic mesh size field, error indicators that
have been used include various combinations of analytic fields, anisotropica posteriori
correction indicators and geometric approximation considerations [Shephard et al. 2005;
Wan et al. 2005]. An example of a part before and after refinement using this approach is
shown in Figure 7.

The current version of the mesh adaptation service builds onthe FMDB mesh library that
employs mesh topology like iMesh. Although it is possible toreplace all FMDB calls with
iMesh calls in the mesh adaptation service code (an activityplanned for the future), the size
of the code and the desire to apply the mesh adaptation to applications quickly prompted
us to take an alternative initial approach. In this approach, meshes are accessed through
the iMesh functions and loaded into the FMDB structures. Themesh adaptation process is
carried out and the resulting mesh is then put back into iMeshform. This approach has the
disadvantage that at the beginning and end of the mesh adaptation process there are two
copies of the mesh. However, since the size of the mesh is typically small compared to the
structures used during the implicit finite element and finitevolume solvers being used to
date, there have not been memory limitations introduced by this process.

6. DISCUSSION AND CONCLUSIONS

In this paper, we have described a new software component formesh-based applications
— both meshing and solver applications. We have described indetail the key features of
this software component, called iMesh: its data model — which defines the types of data
that the component works with — and its interface — which defines how applications can
interact with mesh data.

Also, we have shown by example that iMesh component API is flexible enough for a
wide range of applications — including finite element solvers, mesh improvement and
adaptation, partitioning, and visualization. Our experience with these examples shows
that relatively complex mesh modification and solution requirements can be met by the
interface, with low impact on efficiency. Specifically, for asimple finite element solver,
overhead induced by using the iMesh interface is less than 10%, especially when data for

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

26 · Carl Ollivier-Gooch et al.

multiple entities is retrieved through the mesh interface at once. For mesh smoothing, the
overhead rate varied significantly from case to case, depending on the amount of work
done by the smoothing code relative to the number of calls through the mesh interface.
For mesh swapping, another fine-grained use case for the meshcomponent, overhead rates
were about 20% compared with a native implementation of the same algorithms. Three
higher-level services — mesh partitioning, visualization, and mesh adaptation — have also
been tested across multiple iMesh implementations. In eachcase, the services have proved
to be interoperable, and the overhead in using the iMesh interface is acceptable. Overall,
our experience with these services confirms that relativelycomplex mesh operations can
be performed correctly using the iMesh interface. Also, we have found clear examples of
significant differences between mesh database designs in overall run time for a particular
service.7

Several implementations of the iMesh component are currently available, as are the ser-
vices described in this paper.[ITAPS Software Webpage 2007] An analogous software
component for geometric query and manipulation for mesh-based applications has also
been developed, and work is nearing completion on a parallelextension of the mesh com-
ponent.

Acknowledgments

The authors would like to acknowledge the contributions of Kyle Chand and Tamara
Dahlgren (Lawrence Livermore National Laboratories); Seegyoung Seol (Renssalaer Poly-
technic Institute); Xiaolin Li and Brian Fix (Stony Brook University); and Harold Trease
(Pacific Northwest National Laboratory) to the developmentof the ITAPS mesh compo-
nent.

This work was funded by the U.S. Department of Energy under the Scientific Discovery
through Advanced Computing (SciDAC) program and by the Canadian Natural Sciences
and Engineering Research Council under a Special Research Opportunities grant.

REFERENCES

BALAY , S., BUSCHELMAN, K., GROPP, W.D. KAUSHIK , D., KNEPLEY, M., MCINNES, L.C. SMITH , B., AND

ZHANG, H. 2004. PETSc home page.http://www.mcs.anl.gov/petsc.

BALAY , S., GROPP, W., MCINNES, L., AND SMITH , B. 1997. Efficient management of parallelism in object-
oriented numerical software libraries. InModern Software Tools in Scientific Computing, A. B. E. Arge and
H. Langtangen, Eds. Birkhauser Press, Basel, Switzerland,163–202.

BEALL , M., WALSH, J.,AND SHEPHARD, M. 2004. Accessing CAD geometry for mesh generation.Engineer-
ing with Computers 20,3, 210–221.

BOMAN , E., DEVINE, K., FISK, L. A., HEAPHY, R., HENDRICKSON, B., LEUNG, V., VAUGHAN , C.,
CATALYUREK , U., BOZDAG, D., AND M ITCHELL , W. 1999–2007. Zoltan home page.http://www.
cs.sandia.gov/Zoltan.

BREWER, M., DIACHIN , L. F., KNUPP, P., LEURENT, T., AND MELANDER, D. 2003. The Mesquite mesh
quality improvement toolkit. In12th International Meshing Roundtable. Sandia National Laboratories, 239–
250.

CHAND , K., DIACHIN , L. F., FIX , B., OLLIVIER -GOOCH, C., SEOL, E. S., SHEPHARD, M. S., AND TAUT-
GES, T. 2008. Toward interoperable mesh, geometry and field components for PDE simulation development.
Engineering with Computers 24,2, 165–182.

7Note that this is not contradictory with our finding of low overhead when comparing native and iMesh-based
implementations, as the overhead measurements compare an iMesh implementation of a service to a non-iMesh
implementation of that same functionalityfor a given mesh database.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 27

CHAND , K., FIX , B., DAHLGREN, T., DIACHIN , L. F., LI , X., OLLIVIER -GOOCH, C., SEOL, E., SHEPHARD,
M., TAUTGES, T., AND TREASE, H. 2007a. The ITAPS iBase Interface.http://www.itaps-scidac.
org/software/documentation/iBase_userguide.pdf.

CHAND , K., FIX , B., DAHLGREN, T., DIACHIN , L. F., LI , X., OLLIVIER -GOOCH, C., SEOL, E., SHEPHARD,
M., TAUTGES, T., AND TREASE, H. 2007b. The ITAPS iMesh Interface.http://www.itaps-scidac.
org/software/documenation/iMesh_userguide.pdf.

CHILDS, H., BRUGGER, E., BONNELL, K., MEREDITH, J., MILLER , M., WHITLOCK , B., AND MAX , N.
2005. A contract based system for large data visualization.In Proceedings of IEEE Visualization 2005.

DEVINE, K., BOMAN , E., HEAPHY, R., HENDRICKSON, B., AND VAUGHAN , C. 2002. Zoltan data manage-
ment services for parallel dynamic applications.Computers in Science and Engineering 4,2, 90–97.

EISPACK. 2004. Eispack webpage.http://www.netlib.org/eispack/.

FREITAG, L. A. AND OLLIVIER -GOOCH, C. F. 1997. Tetrahedral mesh improvement using swapping and
smoothing.International Journal for Numerical Methods in Engineering 40,21, 3979–4002.

ITAPS Software Webpage 2007. The Interoperable Technologies for Advanced Petascale Simulations (ITAPS)
Center.http://www.itaps-scidac.org.

Jostle 2002. JOSTLE — graph partitioning software. http://staffweb.cms.gre.ac.uk/ c.walshaw/jostle/.

LAPACK. 2004. Lapack webpage.http://www.netlib.org/lapack/.

L I , X., SHEPHARD, M., AND BEALL , M. 2003. Accounting for curved domains in mesh adaptation.Interna-
tional Journal for Numerical Methods in Engineering 58, 246–276.

L I , X., SHEPHARD, M., AND BEALL , M. 2005. 3D anisotropic mesh adaptation by mesh modifications. Comp.
Meth. Appl. Mech. Engng. 194,48–49, 4915–4950.

LINPACK. 2004. Linpack webpage.http://www.netlib.org/linpack/.

OLLIVIER -GOOCH, C. 2006. A mesh-database-independent edge- and face-swapping tool. AIAA Paper 2006-
0533. Presented at the 44th AIAA Aerospace Sciences Meeting.

OLLIVIER -GOOCH, C. 2008. A data-structure-independent mesh swapping service. Computer Methods in
Applied Mechanics and Engineering Submitted.

OLLIVIER -GOOCH, C. F. 1998–2005. GRUMMP — Generation and Refinement of Unstructured, Mixed-
element Meshes in Parallel.http://tetra.mech.ubc.ca/GRUMMP.

ParMETIS 2006–2008. ParMETIS — parallel graph partitioning and fill-reducing matrix ordering.
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.

REMACLE, J.-F.AND SHEPHARD, M. 2003. An algorithm oriented mesh database.International Journal for
Numerical Methods in Engineering 58, 349–374.

SHEPHARD, M., FLAHERTY, J., JANSEN, K., L I , X., LUO, X.-J., CHEVAUGEON, N., REMACLE, J.-F.,
BEALL , M., AND O’BARA , R. 2005. Adaptive mesh generation for curved domains.Applied Numerical
Mathematics 52,2–3, 251–271.

STEINBRENNER, J., MICHAL , T., AND ABELANET, J. 2005. An industry specification for mesh generation
software. InProceedings of the 17th AIAA Computational Fluid Dynamics Conference. American Institute for
Aeronautics and Astronautics.

TAUTGES, T. J., MEYERS, R. E., MERKLEY, K., STIMPSON, C., AND ERNST, C. 2004. MOAB: A mesh-
oriented data base. InSandia report SAND 2004-1592. Sandia National Laboratories.

TREASE, H. AND TREASE, L. 2004. NorthWest Grid Generation Code.http://www.emsl.pnl.gov/
nwgrid/index_nwgrid.html.

UGC Consortium 2002. Unstructured Grid Consortium Standards Document.http://www.aiaa.org/
tc/mvce/ugc/ugcstandv1.pdf.

UGC Consortium 2005. The Unstructured Grid Consortium.http://www.aiaa.org/tc/mvce/ugc/.

WALSHAW, C. AND CROSS, M. 2007. Jostle: Parallel multilevel graph-partitioningsoftware — an overview.
In Mesh Partitioning Techniques and Domain Decomposition Techniques, F. Magoules, Ed. Civil-Comp Ltd.,
27–58.

WAN , J., KOCAK, S.,AND SHEPHARD, M. 2005. Automated adaptive 3D forming simulation process. Engi-
neering with Computers 21,1, 47–75.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

28 · Carl Ollivier-Gooch et al.

A. A SIMPLE PROGRAM USING THE IMESH COMPONENT

As a simple example of usage of the iMesh component, including language differences, is
illustrated by two versions of the same short program, one inC and the other in Fortran.

C Version

In this version, note that string arguments (see lines 25 and31) each have an argument
at the end of the call list indicating the string length, for compatibility with Fortran string
calling conventions.

1 /** FindConnect: Interacting with iMesh
2 *
3 * This program shows how to get information about
4 * a mesh, by getting connectivity two different
5 * ways (as connectivity and as adjacent 0-dimensional
6 * entities).
7 *
8 * Usage: FindConnect
9 *
10 */
11 #include <stdio.h>
12 #include "iMesh.h"
13 int main(int argc, char *argv[])
14 {
15 int i, ierr;
16 iMesh_Instance mesh;
17 iBase_EntityHandle *ents, *verts, *allverts;
18 int ents_alloc = 0, ents_size;
19 int verts_alloc = 0, verts_size;
20 int allverts_alloc = 0, allverts_size;
21 int *offsets, offsets_alloc = 0, offsets_size;
22 int vert_uses = 0;
23
24 /* create the Mesh instance */
25 iMesh_newMesh("", &mesh, &ierr, 0);
26
27 /* Identify the root set */
28 iBase_EntitySetHandle root_set;
29 iMesh_getRootSet(mesh, &root_set, &ierr);
30 /* load the mesh */
31 iMesh_load(mesh, root_set, "125hex.vtk", "", &ierr, 10, 0);
32 /* get all 3d elements */
33 iMesh_getEntities(mesh, root_set, iBase_REGION, iMesh_ALL_TOPOLOGIES,
34 &ents, &ents_alloc, &ents_size, &ierr);
35 /* iterate through them; */
36 for (i = 0; i < ents_size; i++) {
37 /* get connectivity */
38 verts_alloc = 0;
39 iMesh_getEntAdj(mesh, ents[i], iBase_VERTEX,
40 &verts, &verts_alloc, &verts_size,
41 &ierr);
42 /* sum number of vertex uses */
43 vert_uses += verts_size;
44 free(verts);
45 }
46 /* now get adjacencies in one big block */

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 29

47 iMesh_getEntArrAdj(mesh, ents, ents_size, iBase_VERTEX,
48 &allverts, &allverts_alloc, &allverts_size,
49 &offsets, &offsets_alloc, &offsets_size,
50 &ierr);
51
52 /* compare results of two calling methods */
53 if (allverts_size != vert_uses)
54 puts("Sizes didn’t agree");
55 else
56 puts("Sizes did agree");
57
58 return 0;
59 }

Fortran Version (32 bit compiler)

In this version, note particularly the use of Cray pointer and call-by-value extensions, both
ubiquitous features of Fortran77 compilers, even though not mandated by the language
standard.

1 c FindConnect: Interacting with iMesh
2 c
3 c This program shows how to get more information about a mesh, by
4 c getting connectivity two different ways (as connectivity and as
5 c adjacent 0-dimensional entities).
6 c Usage: FindConnect
7 program findconnect
8 #include "iMesh_f.h"
9 c declarations
10 iMesh_Instance mesh
11 iBase_EntitySetHandle root_set
12 integer ents
13 integer rpverts, rpallverts, ipoffsets
14 pointer (rpents, ents(0:*))
15 pointer (rpverts, verts(0:*))
16 pointer (rpallverts, allverts(0:*))
17 pointer (ipoffsets, ioffsets(0,*))
18 integer ierr, ents_alloc, ents_size
19 integer iverts_alloc, iverts_size
20 integer allverts_alloc, allverts_size
21 integer offsets_alloc, offsets_size
22 c create the Mesh instance
23 call iMesh_newMesh("", mesh, ierr)
24 c identify the root set
25 call iMesh_getRootSet(%VAL(mesh), root_set, ierr)
26 c load the mesh
27 call iMesh_load(%VAL(mesh), %VAL(root_set), "125hex.vtk", "",
28 1 ierr)
29 c get all 3d elements
30 ents_alloc = 0
31 call iMesh_getEntities(%VAL(mesh), %VAL(root_set),
32 1 %VAL(iBase_REGION), %VAL(iMesh_ALL_TOPOLOGIES), rpents,
33 1 ents_alloc, ents_size, ierr)
34 ivert_uses = 0
35 c iterate through them;
36 do i = 0, ents_size-1

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

30 · Carl Ollivier-Gooch et al.

37 c get connectivity
38 iverts_alloc = 0
39 idum = ents(i)
40 call iMesh_getEntAdj(%VAL(mesh), %VAL(idum),
41 1 %VAL(iBase_VERTEX), rpverts, iverts_alloc, iverts_size,
42 1 ierr)
43 c sum number of vertex uses
44 ivert_uses = ivert_uses + iverts_size
45 call free(rpverts)
46 end do
47 c now get adjacencies in one big block
48 allverts_alloc = 0
49 offsets_alloc = 0
50 call iMesh_getEntArrAdj(%VAL(mesh), ents,
51 1 %VAL(ents_size), %VAL(iBase_VERTEX), rpallverts,
52 1 allverts_alloc, allverts_size, ipoffsets, offsets_alloc,
53 1 offsets_size, ierr)
54 call free(rpallverts);
55 call free(ipoffsets);
56 call free(rpents);
57 c compare results of two calling methods
58 if (allverts_size .ne. ivert_uses) then
59 write(*,’("Sizes did not agree!")’)
60 else
61 write(*,’("Sizes did agree!")’)
62 endif
63 call iMesh_dtor(%VAL(mesh), ierr)
64 end

A.1 Building iMesh Executables

Building an iMesh executable requires that the compiler be able to find the iMesh header
files (iMesh.h and iBase.h, or their Fortran counterparts) and that the linker be able to find
a library containing the iMesh implementation. By convention, iMesh implementations
contain a makefile snippet that defines a standard set of variables; an application’s makefile
then includes this snippet, greatly simplifying the build process. The makefile for building
the two example programs above is:

1 include /path/to/iMesh/iMesh-Defs.inc
2
3 FC = gfortran -fcray-pointer -m32
4 CXX = g++
5 CC = gcc
6
7 FindConnectC: FindConnectC.o
8 $(CXX) $(CXXFLAGS) -o $@ FindConnectC.o ${IMESH_LIBS}
9
10 FindConnectF: FindConnectF.o
11 $(CXX) -m32 -lgfortran -lgfortranbegin -o $@ \

FindConnectF.o ${IMESH_LIBS}
12
13 .c.o:
14 $(CC) -c $(CFLAGS) $(IMESH_INCLUDES) $<
15
16 .F.o:
17 ${FC} -c ${FFLAGS} ${IMESH_INCLUDES} $<

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

A Software Component for Mesh Query and Manipulation · 31

Note that both executables are linked using the C++ linker toaccommodate implementation
libraries written in C++. The make variablesIMESH_INCLUDES (used in lines 14 and 17)
andIMESH_LIBS (using in lines 8 and 11) are defined in/path/to/iMesh/iMesh-Defs.inc;
these variables are of course implementation-dependent. An additional useful variable de-
fined by convention in this file isIMESH_LIB_FILES, which identifies iMesh imple-
mentation library files, so that these can be used as dependencies in makefile targets.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

