
Interoperable Tools for Advanced
Petascale Simulations (ITAPS)

TUTORIAL

June 29, 2007

PART 1: Overview and Introduction

3

ITAPS focuses on interoperable
meshing and geometry services for SciDAC

• ITAPS Goal
– Improve SciDAC applications’ ability to take

advantage of state-of-the-art meshing and
geometry tools

– Develop the next generation of meshing and
geometry tools for petascale computing

• Technology Focus Areas
– Complex geometry
– High quality meshes and

adaptivity
– Coupled phenomenon
– Dynamic mesh calculations
– Tera/Petascale computing

4

• Pre-existing ITAPS tools all meet particular needs, but
– They do not interoperate to form high level services
– They cannot be easily interchanged in an application

• In general the technology requires too much software
expertise from application scientists
– Difficult to improve existing codes
– Difficult to design and implement new codes

The ITAPS center recognizes this gap and is addressing the
technical and human barriers preventing use of advanced,

adaptive, and/or hybrid methods

The Challenge

5

The ITAPS team has diverse expertise

Lori Diachin
LLNL

Ed d’Azevedo
ORNL

Jim Glimm
BNL/SUNY SB

Ahmed Khamayseh
ORNL

Bill Henshaw
LLNL

Pat Knupp
SNL

Xiaolin Li
SUNY SB

Roman Samulyak
BNL

Ken Jansen
RPI

Mark Shephard
RPI

Harold Trease
PNNL

Tim Tautges
ANL

Carl Ollivier-Gooch
UBC

Our senior personnel
are experts in complex
geometry tools, mesh

generation, mesh
quality improvement,

front tracking,
partitioning, mesh
refinement, PDE

solvers, and working
with application

scientists

Our senior personnel
are experts in complex
geometry tools, mesh

generation, mesh
quality improvement,

front tracking,
partitioning, mesh
refinement, PDE

solvers, and working
with application

scientists

Karen Devine
SNL

6

NEEDED

• Need for advanced mesh/geom libraries
for parallel simulations

7

NEEDED

• Motivating examples

8

The ITAPS long term technology goal
uses a hierarchical approach

• Build on successes with SciDAC-1
applications and explore new opportunities
with SciDAC-2 application teams

• Develop and deploy key mesh, geometry and
field manipulation component services needed
for petascale computing applications

• Develop advanced functionality integrated
services to support SciDAC application needs
– Combine component services together
– Unify tools with common interfaces to enable

interoperability

Common
Interfaces

Component
Tools

Petascale
Integrated

Tools

Build on

Are unified
by

9

ITAPS will expand and build new DOE
meshing technologies in SciDAC-2

Mesh Geometry Relations FieldCommon
Interfaces

Component
Tools

Are unified
by

Petascale
Integrated

Tools

Build on

Mesh
Improve

Front
tracking

Mesh
Adapt

Interpolation
KernelsSwapping Dynamic

Services
Geom/Mesh

Services

AMR
Front tracking

Shape
Optimization

Solution
Adaptive

Loop

Solution
Transfer

Petascale
Mesh

Generation

You’ll hear about
many of these technologies

today

You’ll hear about
many of these technologies

today

10

Status of the ITAPS services and their
use of the TSTT interfaces

Mesh Geometry Relations FieldCommon
Interfaces

Component
Tools

Are unified
by

Petascale
Integrated

Tools

Build on

Mesh
Improve

Front
tracking

Mesh
Adapt

Interpolation
KernelsSwapping Dynamic

Services
Geom/Mesh

Services

AMR
Front tracking

Shape
Optimization

Solution
Adaptive

Loop

Solution
Transfer

Petascale
Mesh

Generation

NN

NN

NN

αα

ββ αα

ββ

PP

PP

PP ββ PPββ PP

ββ αα

11

NEEDED

• Comparison with other development
approaches

PART 2: ITAPS Data Model

13

The ITAPS interoperability goal requires
abstracting the data model and information flow

• The data model must encompass a
broad spectrum of mesh types and
usage scenarios

• A set of common interfaces
– Implementation and data

structure neutral
– Small enough to encourage

adoption
– Flexible enough to support a

broad range of functionality

• The data model must encompass a
broad spectrum of mesh types and
usage scenarios

• A set of common interfaces
– Implementation and data

structure neutral
– Small enough to encourage

adoption
– Flexible enough to support a

broad range of functionality

• Information flows from geometrical
representation of the domain to the
mesh to the solvers and post-
processing tools

• Adaptive loops and design
optimization requires a loop

• Information flows from geometrical
representation of the domain to the
mesh to the solvers and post-
processing tools

• Adaptive loops and design
optimization requires a loop

CAD Meshing Partitioning

h-Refinement

Solvers Refinement

Omega3P

S3P

T3P

Tau3P

Shape Optimization

14

The ITAPS data model abstracts
PDE-simulation data hierarchy

• Core Data Types
– Geometric Data: provides a high level description of the

boundaries of the computational domain; e.g., CAD, image, or
mesh data

– Mesh Data: provides the geometric and topological information
associated with the discrete representation of the domain

– Field Data: provides access to the time dependent physics
variables associated with application solution. These can be
scalars, vectors, tensors, and associated with any mesh entity.

• Data Relation Managers
– Provides control of the relationships among the core data types
– Resolves cross references between entities in different groups
– Provides functionality that depends on multiple core data types

Each core data type
has an ITAPS interface
• Mesh: iMesh
• Geometry: iGeom
• Fields: iField
• Relations: iRel

Each core data type
has an ITAPS interface
• Mesh: iMesh
• Geometry: iGeom
• Fields: iField
• Relations: iRel

15

ITAPS Data Model – Tim’s slides

• 4 fundamental “types”:
– Entity: fine-grained entities in interface (vertex,

tri, hex)‏
– Entity Set: arbitrary set of entities & other sets

• Parent/child relations, for embedded graphs between
sets

– Interface: object on which interface functions are
called and through which other data are obtained

– Tag: named datum annotated to Entitys, Entity
Sets, Interface

• Instances accessed using opaque (type-
less) “handles”

16

ITAPS Data Model Usage – Tim’s
slides

Klystron mesh, SLAC/SNL

Dual surfaces
level 1

level 2

level 3

OBB Tree

Hierarchical
OBB Tree

Geometric Model
Partition

Design
Velocities

Mesh Partition

17

ITAPS Data Model (cont.)‏ - Tim
Slides’

• Important enumerated types:
– EntityType (iBase_VERTEX, EDGE, FACE, REGION) ‏
– EntityTopology (iMesh_POINT, LINE, TRI, QUAD, ...)‏
– StorageOrder (iBase_BLOCKED, INTERLEAVED) ‏
– TagDataType (iBase_INTEGER, DOUBLE,

ENTITY_HANDLE) ‏
– ErrorType (iBase_SUCCESS, FAILURE, ...) ‏

• Enumerated type & function names both have
iBase, iMesh, iGeom, other names prepended

18

The core data model consists of
entities and entity sets
• Entity Definition

– Unique type and topology
– Canonical ordering defines adjacency relationships

• Entity Set Definition
– Arbitrary grouping of ITAPS entities
– There is a single “Root Set”
– Relationships among entity sets

• Contained-in
• Hierarchical

• Tags allow user-defined data association with
entities and entity sets

• Blend of abstract concepts and familiar
mesh/geometry specifics

19

The geometry interface provides
access to the computational domain

• Must support
– automatic mesh generation
– mesh adaptation
– tracking domain changes
– relating information between

alternative discretizations

• Builds on boundary
representations of geometry

• Used to support various underlying representations
– Commercial modelers (e.g., Parasolid, ACIS)
– Modelers that operate from standard files (e.g. IGES, STEP)
– Models constructed from an input mesh

20

Basic and advanced functionalities
are supported in the geometry interface

• Model loading and initiation
• Topological queries of entities and

adjacencies
• Pointwise geometric shape

interrogation
• Parametric coordinate systems
• Model topology modification

21

The mesh interface provides access to
the discrete representation of the domain
• Must support

– Access to mesh geometry and topology
– User-defined mesh manipulation and adaptivity
– Grouping of related mesh entities together (e.g.

for boundary conditions)
– Distribution across distributed memory

machines
– Relations to the geometry and field data

• Builds on a general data model that is
largely suited for unstructured grids

• Implemented using a variety of mesh
types, software, and for a number of
different usage scenarios

22

The mesh interface supports both basic
and more advanced functionalities

• Provides basic access to vertex coordinates and
adjacency information
– Mesh loading and saving
– Global information such as the root set, geometric

dimension, number of entities of a given type or topology
– Primitive array access for entity sets
– Global entity arrays for entity sets
– Coarse grain ‘block’ iterators to preserve performance

• Mesh modification
– Adding / Deleting entities
– Vertex relocation
– No validity checks

23

Relating mesh and geometry data is
critical for advanced ITAPS services

• Required for e.g., adaptive loops, mesh
quality improvement

• Mesh/Geometry Classification Interface
– Manages the relationship between the high

level geometric description and the mesh
– Called by an application that knows about

both

• Capabilities
– For a given mesh entity, get the geometric

entity against which it is classified
– Establish a classification relationship between

a mesh entity and a geometric entity

24

Core functions must be implemented
to be TSTT compliant
• The smallest set of functions required to be considered

TSTT compliant
• Provides basic access to vertex coordinates and

adjacency information
– Mesh loading and saving
– Accessing global information such as the root set, geometric

dimension, number of entities of a given type or topology
– Primitive array access for entity sets
– Global entity arrays for entity sets

• Reference implementations can be used to provide
advanced capabilities needed for TSTT services
– Requires a copy of mesh data
– Allows incremental implementation of advanced functions

25

Issues that have arisen

• Nomenclature is harder than we first thought
• Cannot achieve the 100 percent solution, so...

– What level of functionality should be supported?
• Minimal interfaces only?
• Interfaces for convenience and performance?

– What about support of existing packages?
• Are there atomic operations that all support?
• What additional functionalities from existing packages should be

required?
– What about additional functionalities such as locking?

• The devil is in the details
– Memory management, multi-valued tag behavior, separation of

functionality, nomenclature (did I mention that already?)
• Language interoperability and performance

26

Interface implementations are well
underway

• TSTT Mesh 0.7 Interface complete
• Geometry and relations interfaces well on their way
• Preliminary field data interface
• Implementations

– Mesh: FMDB, GRUMMP, NWGrid, MOAB, Frontier
– Geometry: CGM

• C, C++, and Fortran language interoperability through C-
bindings and SIDL/Babel (CCA)
– Analyzing performance ramifications of SIDL/Babel language

interoperability tools (joint with the CCA)
• Interfaces stable enough to build services upon them and

test interoperability

27

NEEDED

• Parallelism in the ITAPS data model

PART 3: ITAPS Interfaces

29

NEEDED

• Design philosophy and basic tenets

30

Outline

• ITAPS Data Model
• ITAPS Interfaces (w/ examples)‏

– iMesh
– iGeom
– iRel

• Best Practices (for Performance)‏
• Language Interoperability

– C-binding interface
– SIDL/Babel

31

ITAPS Interfaces Designed for
Interoperability

iMesh
(C)

implA.CC

app1.f77 app2.f90 app3.CC app4.c

implB.c implC.f77

Babel

Server
f77 client

Python client
Java client

app1.f77

app2.py

app3.java

• Interoperability across language,
application, implementation

• Multiple call paths to the same
implementation

• Efficiency preserved using
direct, C-based interface

32

Simple Example:
HELLO iMesh (C++) ‏

• Simple, typical application which 1) Instantiates iMesh interface, 2)
Reads mesh from disk, 3) Reports # entities of each dimension

#include <iostream>
#include "iMesh.h"

int main(int argc, char *argv[])
{

// create the Mesh instance
char *options = NULL;
iMesh_Instance mesh;
int ierr, options_len = 0;
iMesh_newMesh(options, &mesh, &ierr,

options_len);

// load the mesh
iMesh_load(mesh, argv[1], options, &ierr,

strlen(argv[1]), options_len);

// report the number of elements of each dimension
for (int dim = iBase_VERTEX; dim <= iBase_REGION; dim++) {

int numd;
iMesh_getNumOfType(mesh, 0, dim, &numd, &ierr);
std::cout << "Number of " << dim << "d elements = "

<< numd << std::endl;
}
return true;}

1

• Makefile:
include ../../iMesh-Defs.inc

HELLOiMesh: HELLOiMesh.o ${IMESH_FILES}

$(CXX) $(CXXFLAGS) -o $@ HELLOiMesh.o \

${IMESH_LIBS_LINK}

.cpp.o:

${CXX} -c ${CXXFLAGS} ${IMESH_INCLUDES} $<

2

3

Note: no error checking here for brevity,
but there should be in your code!!!

33

ITAPS API's: Argument Handling
Conventions

• ITAPS API's are C-like and can be called directly from C, Fortran, C++
• Arguments pass by value (in) or reference (inout, out) ‏

– Fortran: use %VAL extension
• Memory allocation for lists done in application or implementation

– If inout list comes in allocated, length must be long enough to store results of
call

– By definition, allocation/deallocation done using C malloc/free; application
required to free memory returned by implementation

– Fortran: Use “cray pointer” extension (equivalences to normal f77 array) ‏
• Handle types typedef'd to size_t (iBase_EntityHandle,

iBase_EntitySetHandle, iBase_TagHandle, iMesh_Instance) ‏
• Strings: char*, with length passed by value after all other args
• Enum's: values (iBase_SUCCESS, etc.) available for comparison

operations, but passed as integer arguments
– Fortran: named parameters

34

Argument Handling Conventions

Issue C FORTRAN SIDL

Function Names iXxxx_ prefix Same as C Removed iXxxx_ prefix; SIDL interface
organization

Interface Handle Typedef'd to size_t, as type
iXxxx_Instance; instance handle is
1st argument to all functions

#define'd as type Integer; handle
instance is 1st argument to all
functions

Interface type derived from sidl.BaseInterface

Enumerated Variables All arguments integer-type instead
of enum-type; values from
enumerated types

Same, with enum values defined as
FORTRAN parameters

Int-type arguments; enumerated types defined
in iXxxx:: namespace, and values appear as
iXxxx::enumName_enumValue

Entity, Set, Tag Handles Typedef'd as size_t; typedef types
iBase_EntityHandle,
iBase_EntitySetHandle,
iBase_TagHandle

#define'd as type Integer Handles declared as SIDL opaque type
(mapped to void* in C/C++ server)

Lists · In: X *list, int occupied_size
· Inout: X **list, int
*allocated_size, int
**occupied_size
· malloc/free-based memory
allocation/deallocation

Same, with Cray pointers used to
reference arrays (see FindConnectF
example

· In: sidl::array<X> list, int occupied_size
· Inout: sidl::array<X> &list, int
&occupied_size
· sidl::array class memory allocation

String char*-type, with string length(s) at
end of argument list

char[]-type without extra length
argument (this length gets added
implicitly by FORTRAN compiler)

sidl::string type without extra length argument

35

iMesh API Summary

• Logically arranged into interfaces, but not explicitly
arranged as such in C
– See iMesh.h or iMesh.sidl

• Basic (Mesh): load, save, getEntities,
getNumOfType/Topo, getAllVtxCoordinates,
getAdjacencies

• Entity: init/get/reset/endEntIter (iterators),
getEntType/Topo, getEntAdj, getVtxCoord

• Arr (Entity arrays): like Entity, but for arrays of
entities

• Modify: createVtx/Ent, setVtxCoord, deleteEnt

36

Imesh API Summary (cont.)‏

• From iBase:
– Tag: create/destroyTag,

getTagName/SizeBytes/SizeValues/Handle/Type
– EntTag: get/setData, get/setInt/Dbl/EHData, getAllTags, rmvTag
– ArrTag: like EntTag, but for arrays of entities
– SetTag: like EntTag, but for entity sets
– EntSet: create/destroyEntSet, add/remove entity/entities/set,

isEnt/EntSetContained
– SetRelation: add/rmvPrntChld, isChildOf, getNumChld/Prnt,

getChldn/Prnts
– SetBoolOps: subtract, intersect, unite

• iBase-inherited function names still start with 'iMesh_' to
avoid name collision with other iBase-inherited interfaces
(iGeom, iRel, etc.) ‏

37

NEEDED

• Accessing global information

38

Slightly More Complicated Example:
FindConnect (C) ‏
#include <iostream>
#include "iMesh.h"

typedef void* EntityHandle;

int main(int argc, char *argv[])‏
{

// create the Mesh instance
iMesh_Instance mesh;
int ierr;
iMesh_newMesh("", &mesh, &ierr, 0);

// load the mesh
iMesh_load(mesh, 0, "125hex.vtk", "",
&ierr, 10, 0);

// get all 3d elements
iMesh_EntityHandle *ents;
int ents_alloc = 0, ents_size;
iMesh_getEntities(mesh, 0, iBase_REGION,

iMesh_ALL_TOPOLOGIES,
&ents, &ents_alloc,
&ents_size, &ierr);

int vert_uses = 0;

// iterate through them
for (int i = 0; i < ents_size; i++) {

// get connectivity
iBase_EntityHandle *verts;
int verts_alloc = 0, verts_size;

iMesh_getEntAdj(mesh, ents[i], iBase_VERTEX,
&verts, &verts_alloc, &verts_size,
&ierr);

// sum number of vertex uses
vert_uses += verts_size;
free(verts);

}

// now get adjacencies in one big block
iBase_EntityHandle *allv;
int *offsets;
int allv_alloc = 0, allv_size,

offsets_alloc = 0, offsets_size;
iMesh_getEntArrAdj(mesh, ents, ents_size,

iBase_VERTEX,
&allv, &allv_alloc, &allv_size,
&offsets, &offsets_alloc, &offsets_size,
&ierr);

// compare results of two calling methods
if (allv_size != vert_uses)‏

std::cout << "Sizes didn't agree" <<
std::endl;

else
std::cout << "Sizes did agree" << std::endl;

return true;
}

1

2

3

39

FindConnect (C) Notes

• Typical inout list usage
• X *list, int list_alloc = 0, int list_size
• Setting list_alloc to zero OR list = NULL indicates

list is unallocated, so it will be allocated inside
iMesh_getEntities

• Addresses of these parameters passed into
iMesh_getEntities

1.Inout list declared inside 'for' loop
2.Memory de-allocated inside loop

40

Slightly More Complicated Example:
FindConnect (Fortran) ‏

program findconnect
#include "iMesh_f.h"

c declarations
iMesh_Instance mesh
integer ierr, ents
pointer (rpents, ents(0:*))‏
integer rpverts, rpallverts, ipoffsets
pointer (rpverts, verts(0:*))‏
pointer (rpallverts, allverts(0:*))‏
pointer (ipoffsets, ioffsets(0,*))‏
integer ents_alloc, ents_size
integer verts_alloc, verts_size
integer allverts_alloc, allverts_size
integer offsets_alloc, offsets_size

c create the Mesh instance
call iMesh_newMesh("MOAB", mesh, ierr)‏

c load the mesh
call iMesh_load(%VAL(mesh), %VAL(0),

1 "125hex.vtk", "", ierr)‏

c get all 3d elements
ents_alloc = 0
call iMesh_getEntities(%VAL(mesh),

1 %VAL(0), %VAL(iBase_REGION),
1 %VAL(iMesh_ALL_TOPOLOGIES),
1 rpents, ents_alloc, ents_size,
1 ierr)‏

ivert_uses = 0

c iterate through them;
do i = 0, ents_size-1

c get connectivity
verts_alloc = 0
call iMesh_getEntAdj(%VAL(mesh),

1 %VAL(ents(i)), %VAL(iBase_VERTEX),
1 rpverts, verts_alloc, verts_size, ierr)‏

c sum number of vertex uses
vert_uses = vert_uses + verts_size
call free(rpverts)‏

end do

c now get adjacencies in one big block
allverts_alloc = 0
offsets_alloc = 0
call iMesh_getEntArrAdj(%VAL(mesh),

1 %VAL(rpents), %VAL(ents_size),
1 %VAL(iBase_VERTEX), allverts,
1 allverts_alloc, allverts_size, offsets,
1 offsets_alloc, offsets_size, ierr)‏

c compare results of two calling methods
if (allverts_size .ne. vert_uses) then

write(*,'("Sizes didn''t agree!")')‏
else

write(*,'("Sizes did agree!")')‏
endif

end

1

2

4

3

41

FindConnect (Fortran) Notes

1. Cray pointer usage
• “pointer” (rpverts, rpoffsets, etc.) declared as type integer
• “pointee” (verts, ioffsets, etc.) implicitly typed or declared explicitly
• pointer statement equivalences pointer to start of pointee array
• pointee un-allocated until explicitly allocated

2. Set allocated size (ents_alloc) to zero to force allocation in
iMesh_getEntities; arguments passed by reference by
default, use %VAL extension to pass by value; pointers
passed by reference by default, like arrays

3. Allocated size set to zero to force re-allocation in every
iteration of do loop

4. Use C-based free function to de-allocate memory

42

Slightly More Complicated Example:
FindConnect (SIDL/C++) ‏

#include <iostream>
#include "iMesh.hh"
using std;

typedef void* EntityHandle;

int main(int argc, char *argv[])‏
{

// create the Mesh instance
iMesh::Mesh mesh = iMesh::newMesh("");

// load the mesh
mesh.load(0, "125hex.g", "");

// get all 3d elements
sidl::array<EntityHandle> ents;
int ents_size;
mesh.getEntities(0,

iBase::EntityType_REGION,

iMesh::EntityTopology_ALL_TOPOLOGIES,
ents, ents_size);

int vert_uses = 0;

// iterate through them; first have to get an
// Entity interface instance

iMesh::Entity mesh_ent = mesh;
for (int i = 0; i < ents_size; i++) {

// get connectivity
sidl::array<EntityHandle> verts;
int verts_size;
mesh_ent.getEntAdj(ents[i],

iBase::EntityType_VERTEX,
verts, verts_size);

// sum number of vertex uses
vert_uses += verts_size;

}

// now get adjacencies in one big block
sidl::array<EntityHandle> allverts;
sidl::array<int> offsets;
int allverts_size, offsets_size;
iMesh::Arr mesh_arr = mesh;
mesh_arr.getEntArrAdj(ents, ents_size,

iBase::EntityType_VERTEX,
allverts, allverts_size,
offsets, offsets_size);

// compare results of two calling methods
if (allverts_size .ne. vert_uses) then

cout << "Sizes didn''t agree!” << endl;
else cout << "Sizes did agree!" << endl;

return true;
}

1

2

3

4

5

43

FindConnect (SIDL/C++) Notes

1.Static function on iMesh class used to instantiate
interface

2.List declaration using SIDL templated array
3.getEntities member function called on iMesh

instance
4.Assignment operator-based cast to iMesh::Entity

interface
5.Declaration of list inside for loop; re-constructed on

every iteration, and de-constructed using use counts

44

FindConnect Makefile
include /home/tautges/MOAB_gcc4.2/lib/iMesh-Defs.inc

FC = gfortran-4.2
CXX = g++-4.2
CC = gcc-4.2

CXXFLAGS = -g
CFLAGS = -g
FFLAGS = -g -fcray-pointer
FLFLAGS = -g -L/home/tautges/gcc-4.2/lib -L/usr/lib/gcc/i486-linux-gnu/4.2.1 -lgfortranbegin

-lgfortran -lm

FindConnectS: FindConnectS.o
$(CXX) $(CXXFLAGS) -o $@ FindConnect.o ${IMESH_SIDL_LIBS_LINK}

FindConnectC: FindConnectC.o
$(CC) $(CFLAGS) -o $@ FindConnectC.o ${IMESH_LIBS_LINK}

FindConnectF: FindConnectF.o
$(CXX) -o $@ FindConnectF.o $(FLFLAGS) ${IMESH_LIBS_LINK}

.cpp.o:
${CXX} -c ${CXXFLAGS} ${IMESH_INCLUDES} $<

.cc.o:
${CC} -c ${CFLAGS} ${IMESH_INCLUDES} $<

.F.o:
${FC} -c ${FFLAGS} ${IMESH_INCLUDES} $<

45

ListSetsNTags Example

• Read in a mesh
• Get all sets
• For each set:

– Get tags on the set and names of those tags
– If tag is integer or double type, also get value
– Print tag names & values for each set

• Various uses for sets & tags, most interesting ones involve
both together
– Geometric topology
– Boundary conditions
– Processor decomposition

46

ListSetsNTags Example (SIDL/C++) ‏
#include "iBase.hh"
#include "iMesh_SIDL.hh"

typedef void* iBase_EntityHandle;
typedef void* iBase_EntitySetHandle;
typedef void* iBase_TagHandle;

int main(int argc, char *argv[])‏
{

// Check command line arg
std::string filename = argv[1];

// create the Mesh instance
iMesh::Mesh mesh;
iMesh_SIDL::MeshSidl::newMesh("", mesh);

// load the mesh
string options;
mesh.load(0, filename, options);

// get all sets; use EntSet interface
sidl::array<iBase_EntitySetHandle> sets;
int sets_size;
iBase::EntSet mesh_eset = mesh;
mesh_eset.getEntSets(0, 1,

sets, sets_size);

// iterate through them, checking whether
they have tags

iBase::SetTag mesh_stag = mesh;
for (int i = 0; i < sets_size; i++) {

// get connectivity
sidl::array<iBase_TagHandle> tags;
int tags_size;

mesh_stag.getAllEntSetTags(sets[i],
tags, tags_size);

if (0 != tags_size) {
cout << "Set " << sets[i] << ": Tags: ";

// list tag names on this set
for (int j = 0; j < tags_size; j++) {

string tname;
int int_val;
double dbl_val;
mesh_stag.getTagName(tags[j], tname);
cout << tname;
iBase::TagValueType tag_type;
mesh_stag.getTagType(tags[j], tag_type);
if (iBase::TagValueType_INTEGER ==

tag_type) {
mesh_stag.getEntSetIntData(sets[i],

tags[j], int_val);
cout << " (val = " << int_val << "); ";

}
else if (iBase::TagValueType_DOUBLE ==

tag_type) {
mesh_stag.getEntSetDblData(sets[i],

tags[j], dbl_val);
cout << " (val = " << dbl_val << "); ";

}
else cout << "; ";

}
}
cout << endl;

}

return true;
}

1

2

47

ListSetsNTags Example Notes

• Enumerated variables declared in SIDL-based code
as Iface::enumNAME, e.g. iBase::EntityType or
iBase::TagType

• Enumerated variable values appear as
Iface::enumNAME_enumVALUE, e.g.
iMesh::EntityTopology_TETRAHEDRON or
iBase::TagType_INTEGER

48
0 1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

70

80

90

100 Total CPU Tim e
Native Scd
Nat ive Arr
Nat ive Ent
SIDL Arr
SIDL Ent
C Arr
C Ent
Cubit

Elem ents (m illion)

Ti
m

e
(s

)

0 1 2 3 4 5 6 7 8

0

100

200

300

400

500

600

700

800

900
Mem ory Usage

Native Scd
Nat ive Arr
Nat ive Ent
SIDL Arr
SIDL Ent
C Arr
C Ent
Cubit

Elem ents

M
em

or
y

(M
B

)

Performance
• Large applications balance memory and cpu time performance
• Implementations of iMesh vary on speed vs. memory performance

– Create, v-E, E-v query, square all-hex mesh
– Entity- vs. Array-based access

• Compare iMesh (C, SIDL), Native (MOAB), Native Scd (MOAB), CUBIT
– Ent-, Arr-based access
– All-hexahedral square structured mesh

Native Scd

C Ent

CUBIT
SIDL Ent
SIDL Arr
C Arr

Native Ent
Native Arr

C Ent

SIDL Ent

C Arr
Native Scd
Native Ent
Native Arr
CUBIT

49

iMesh Review

• Data model consists of 4 basic types: Interface, Entity, Entity
Set, Tag

• Applications reference instances of these using opaque
handles

• ITAPS interfaces use C-based APIs, for efficiency and
interoperability
– SIDL-based implementation also available, which work through C-

based API
• Not covered here:

– Iterators (intermediate-level, “chunked” access to mesh) ‏
– Modify (relatively coarse-grained, basically create and delete whole

entities)‏
– Set parent-child links

50

ITAPS Interfaces
Best Practices

• Use C-based interface where possible, for efficiency
• Pre-allocate memory in application or re-use memory

allocated by implementation
– E.g. getting vertices adjacent to element – can use static

array, or application-native storage
• Take advantage of implementation-provided

capabilities to avoid re-inventing
– Partitioning, IO, parallel communication, (parallel) file readers

• If one implementation of iMesh doesn't work for you,
try another
– Interoperability is an explicit goal of ITAPS

• Implement iMesh on top of your data structure
– Take advantage of tools which work on iMesh API

• Let us help you
– Not all the tricks can be easily described and may not be self-

evident

Parallel Mesh Interfaces

52

Parallel Mesh Interface: iMeshP

• Primarily support distributed memory.
– For example: use MPI communicators from

application.
– But allow use of global address space and shared

memory paradigms.

• Maintain backward compatibility of serial
iMesh.
– Serial iMesh works as expected within a process.
– Serial iMesh works as expected for global address

space and shared memory programs.

53

iMesh instance: SLAC linear accelerator
Partition: 8 parts on 8 processes

Communicator = MPI_COMM_WORLD

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8

iMeshP Partition Model

• Process: a program executing; MPI process.
– Number of processes == MPI_Comm_size
– Process number == MPI_Comm_rank

• iMesh instance: mesh database provided by an
implementation.
– Each process has one or more mesh instances.

• Partition: describes a parallel mesh.
– Maps entities to subsets called parts.
– Maps parts to processes.
– Has a communicator associated with it.

54

iMeshP Partition Model

• Ownership: having the right to modify.
• Internal entity: Owned entity not on an

interpart boundary.
– E.g., Vertices 1-6 are internal to the red part.

• Part-Boundary entity: Entity on an interpart
boundary.
– E.g., Edges A, B, C & D are part-boundary edges.
– Typically shared between parts (one part is

owner; other parts have copies).

• Ghost entity: Non-owned, non-part-
boundary entity in a part.
– E.g., Regions X, Y, and Z are ghost regions for

the blue part.
• Copies: ghost entities + non-owned part-

boundary entities.

A

B
C

D

1

3

4

5

6

2

X

Y

Z

55

Partition Characteristics

• Maps entities to parts.
– Part assignments computed with respect to a set

of entities.
– Computed assignments induces part assignments

for adjacent entities.
• Maps parts to processes.

– Each process may have one or more parts.
– Each part is wholly contained within a process.

• Has a communicator associated with it.
– “Global” operations performed with respect to data

in all parts in a partition’s communicator.
– “Local” operations performed with respect to either

a part’s or process’ data.

56

iMeshP Partition API Functions

• Create partition.
– Accepts pointer to MPI Communicator or

NULL.
• Destroy partition.
• Sync partition.

– After parts are added/updated, compute
and store global information about the
partition.

• Return number of parts in partition.
• Return global number of entities of

57

Part characteristics

• Think in terms of parts, not processes.
– Number of parts may be less than, equal

to, or greater than number of processes.
• Part contains entities it owns + copies of

entities needed for computation within
the part.

• Wholly stored in a single process.
• Accessed and identified via part IDs.

– Unique global identifiers for parts.
• Local (on-process) parts also can be

58

iMeshP Part API Functions

• Create part and add to partition.
• Remove part and destroy it.
• Iterate over part-boundary entities.
• Return part neighbors.

– Parts A and B are neighbors if Part A has copies
of entities owned by Part B or vice versa.

• Return entity data within a part.
– Get number of local entities in a part.
– Get entities in a part.

• Add/remove entity to/from a local part.

59

Entity Characteristics

• Each entity is owned by only one part per partition.
– Ownership grants right to modify.

• Entities may be copied on other parts.
• Duplicated information for copies:

– Shared boundary entities, ghost entities.
– Owner of an entity knows remote part and remote entity

handle of all its copies.
– All copies of entity know the entity owner’s part and the

entity handle on the owner.
– All boundary entities know all remote parts and remote

entity handles of all copies.
• Remote parts and entities are computed by a

collective function called after mesh modification.
– Queries for remote data do not require communication.

60

iMeshP Entity API Functions

• Determine ownership of entity.
• Determine whether entity is internal,

boundary, ghost.
• Return remote part and remote entity handles

for copies of entity.
• Return owner part and owner entity handle

for an entity.

61

• iMeshP_createGhostEnts
– Create ghost entities for each part.
– Specify ghost-entity dimension, bridge dimension,

and number of layers.
• E.g., one layer of ghost regions for all boundary regions

sharing faces:
– Ghost-entity dimension = 2
– Bridge-entity dimension = 1
– Number of layers = 1

– Cumulative over multiple calls.
• iMeshP_deleteGhostEnts

– Delete all ghost entities.

Ghost Entities

62

Inter-part Mesh Operations

• iMeshP provides functions for inter-part
operations on mesh entities.
– Migrate large numbers of entities for, say,

load balancing.
– Migrate small numbers of entities for, say,

mesh modification.
– Update mesh database during mesh

modification.
– Exchange tag values.

63

Inter-part Mesh Operation Requests

• Inter-part mesh operations are
coordinated via iMeshP_Requests.
– More than an MPI_Request!
– Indicate status of a given iMeshP mesh

operation.
• Migrate entity.
• Update vertex coordinates.
• Update part-boundary entities.
• Exchange tag data.

– iMeshP encodes type of request and
operations to be performed in
iM hP R

64

Inter-part Mesh Operations can be
blocking or non-blocking.
• Blocking operations do not return from

iMeshP until request is complete.
• Non-blocking operations return from iMeshP

after request is made. Application later waits
until request is fulfilled.
– iMeshP API contains functions to …

• Wait for request completion,
• Test for request completion, and
• Poll for and carry out requests received.

– Allows overlapping communication/computation.
– Allows asynchronous communication.

65

Large-Scale Migration

• In application, each part calls iMeshP to migrate (push)
array of entities to new parts. (iMeshP_sendEntArr)
– iMeshP computes and posts appropriate receives.
– iMeshP sends entities to new parts.
– iMeshP deletes entities from old parts.
– iMeshP returns an iMeshP_Request.

• Application does something else for awhile.
• In application, each part calls iMeshP_Wait function with

the iMeshP_Request returned by send.
– iMeshP waits to receive messages.
– iMeshP adds entities to

new parts and updates mesh.

66

Exchange Entity Tag Data

• Entity owners send tag data to copies.
• iMeshP API provides both blocking and

non-blocking versions of tag-data exchange.
– iMeshP_exchTagData and iMeshP_IexchTagData

T=1.1

T=1.1

T=1.3

T=1.2

T=1.2

T=1.2

T=1.1

T=1.1

T=1.2

T=1.2

T=1.2

T=1.3

67

Edge Splitting with Non-Blocking
Update

• Blue and red parts decide to split edge A.
• Red part creates edges R1, R2 and vertex

VR.
• Blue part creates edges B1, B2 and vertex

VB.
• Blue and red parts call iMeshP to request

replacement of A with new edges and
vertices on opposite part.
– iMeshP_replaceOnPartBdry

• Blue and red parts call iMeshP to poll for
requests; iMeshP receives updates and
matches up
B1 ⇔ R1, B2 ⇔ R2, and VB ⇔ VR.

A

B1

B2 R2

R1
VB VR

68

V V

Mesh Smoothing with
Non-Blocking Update

• Blue part decides to move vertex V.
• Blue part calls iMeshP to request update of V’s

vertex coordinates on red part.
– iMeshP_updateVtxCoords

• Red part calls iMeshP to poll for requests;
iMeshP receives request and updates V’s
coordinates.

69

A

A

Micro-migration for Mesh
Modification
• Blue part owns edge A.
• Red part needs edge A to do edge

swapping.
• Red part calls iMeshP to request

edge A from Blue part.
– iMeshP_migrateEntity

• Blue part calls iMeshP to poll for
requests; iMeshP receives request
and sends A and its higher-order
adjacencies to Red part.

• Red part calls iMeshP to wait for
it i t t t l t

70

Updating Mesh Consistency

• After all mesh modification is done, application calls
iMeshP_syncMeshAll.
– A collective, blocking call that signals mesh modification

operations are completed.
– Polls for and processes outstanding requests.
– Updates ghost entities for modified mesh.
– Performs operations needed for parallel mesh

consistency.

71

Future Work

• Add support for multiple partitions of a mesh.
– Specify “primary” and

“secondary” partitions.
– Map mesh data between

multiple partitions.

• Parallel File I/O
– Read/write 1, N<<P, or P files.
– Provide initial partition of data.

Graph-based
region partition

Geometric
face partition

72

ITAPS Geometry Interface: iGeom

• Similar to mesh interface, but for geometric models
– CAD models first, but really more than that (depending on

implementation) ‏
• Interface for accessing BREP-type geometric models

– Uses iBase::EntityType's VERTEX, EDGE, FACE, REGION
• Provides same 4-typed data model used by iMesh

– Entity, Entity Set, Interface, Tag
• Query methods for topology, geometry; modify interface also
• Somewhat less mature than iMesh

– Implementation based on CGM (RPI implementing one too) ‏
– Interface not finalized by ITAPS group, but close

• CGM-based implementation:
– Support shape optimization, parallel load
– Initializes “complete” geometric models from CUBIT meshing toolkit

• Tags, sets used to represent geometric groups, ids, boundary condition
groupings, etc.

73

iGeom API Summary

• Logically arranged into interfaces, but not explicitly arranged as such in C
– See iGeom.h or iGeom.sidl

• Basic (CoreQuery): load, save
• Topology: getEntities, getNumOfType, getEntType, getEntAdj,

get2ndAdj, isEntAdj (also for Arr's)‏
• Shape: getEntClosestPt, getEntNrmlXYZ, getEntTgntXYZ,

getFc/EgCvtrXYZ, etEgFcEvalXYZ, getEntBoundBox, getVtxCoord,
getPntRayIntsct, getEntNrmlSense, getEgFcSense, getEgVtxSense,
Measure

• Parametric: isParametric, forward/reverse parametric evaluation
(getEntUVtoXYZ, getEntXYZtoUV, etc.), parameter-based
normal/tangent, isEntPeriodic, isFc/EgDegenerate, etc.

• Tolerance: getTolerance, getEntTolerrance

74

iGeom API Summary (cont.)‏

• Iterator: initEntIter, etc.
• Modify:

– Construct: Copy, SweepAboutAxis, Delete
– Primitives: Brick, Cylinder, Torus
– Transforms: Move, Rotate, Reflect, Scale
– Booleans: Unite, Subtract, Section, Imprint, Merge

ITAPS Relations Interface: iRel

• An important part of the ITAPS interfaces philosophy is to have multiple
interfaces
– Makes it easier to mix & match components
– Makes each component easier to understand

• Sometimes data in different components need to be associated
together
– Mesh-geometry
– Fields-mesh

• ITAPS is developing “Relations” interface to do this
– Currently, most of TSTTR is targeted to mesh-geometry classification

• 2 parts of relations process: building/restoring relations, querying them
– Restoring relations done by matching entities, sets, tag(s)/value(s) ‏
– Can relate entity to entity, set to entity, set to set
– For mesh-geometry, relate set-entity

• Implementation depends heavily on restoring data
– For LASSO, done by reading CUBIT .cub save/restore files

iRel Interface Summary

• createAssocation, destroyAssociation
• getAssociatedInterfaces
• set/get EntEnt/EntArr/Arr Association
• create Vtx/Ent/VtxArr/EntArr AndAssociate,

moveTo
• infer Ent/Arr/All Associations

77

iRel Simple Example: RelateEm
#include "iRel.h"
#include <iostream>

const int NOT_SET = 0, IS_SET = 1;

int main(int argc, char *argv[])‏
{

// Check command line arg
if (argc < 2) {

std::cerr << "Usage: " << argv[0] << " <geom_filename>" <<
" <mesh_filename>" << std::endl;

return 1;
}

// initialize the Geometry, Mesh, and Relate instances
int err;
iGeom_Instance geom;
iGeom_newGeom(0, &geom, &err, 0);
iMesh_Instance mesh;
iMesh_newMesh(0, &mesh, &err, 0);
iRel_Instance relate;
iRel_newAssoc(0, &relate, &err, 0);

// load geometry and mesh
iBase_EntitySetHandle mesh_root_set, geom_root_set;
iMesh_getRootSet(mesh, &mesh_root_set, &err); ;
iGeom_getRootSet(geom, &geom_root_set, &err); ;
iGeom_load(geom, argv[1], 0, &err, strlen(argv[1]), 0);
iMesh_load(mesh, mesh_root_set, argv[2], 0, &err,

strlen(argv[2]), 0);

// create a relation
iRel_RelationHandle rel;
iRel_createAssociation(relate, geom, NOT_SET,

iRel_IGEOM_IFACE,
mesh, IS_SET, iRel_IMESH_IFACE,
&rel, &err); ;

// relate all entities
iRel_inferAllAssociations(relate, rel, &err);

// get all geom regions
iBase_EntityHandle* gents = 0;
int gents_alloc = 0, gents_size = 0;
iGeom_getEntities(geom, geom_root_set, iBase_REGION,

&gents, &gents_alloc, &gents_size,
&err);

// check for related sets
iBase_EntityHandle* ments = 0;
int ments_alloc = 0, ments_size = 0;
int *offset = 0, offset_alloc = 0, offset_size = 0;
iRel_getArrAssociation(relate, rel,

gents, gents_size,
0, 1, 0,
&ments, &ments_alloc, &ments_size,
&offset, &offset_alloc, &offset_size,
&err);

int num_related = 0;
for (int i = 0; i < ments_size; i++)‏

if (NULL != ments[i]) num_related++;

std::cout << "Number of geom regions = " << gents_size
<< ", related mesh sets = " << ments_size << std::endl;

// clean up
free(gents);
free(ments);
free(offset);
iRel_destroyAssociation(relate, rel, &err);
iRel_dtor(relate, &err);
iMesh_dtor(mesh, &err);
iGeom_dtor(geom, &err);

return 0;
}

Advanced: Writing Your Own iMesh
Implementation

• You can use iMesh-based tools like Mesquite, Zoltan by
implementing iMesh on top of your mesh representation

• Steps (C):
– Implement functions in iMesh.h based on your data structure

• Steps (SIDL):
− Decide class name for your implementation, provide

iMesh-<class>.sidl (see iMesh.sidl, iMesh_SIDL.sidl) ‏
1. Run Babel tool on iMesh.sidl and iMesh_<class>.sidl
2. Produces function declarations and stub definitions in

server/iMesh_<class-uppercase>_<class>_Impl.[hh,cc]
3. Fill in your implementation

• Lines with “DO-NOT-DELETE” delimit places you can fill in includes,
implementation, etc.

4. Link into your own iMesh server library
5. Subsequent runs of Babel won’t overwrite blocks of code between those

delimiters
• Link iMesh-enabled tool to your implementation

MORNING SESSION HANDS ON

PART 4: ITAPS Services and Tools

81

ITAPS impact SciDAC
applications in three ways
• Direct use of ITAPS technology in applications

– Geometry tools, mesh generation and optimization for
accelerators and fusion

– Mesh adaptivity for accelerators and fusion
– Front tracking for astrophysics and groundwater
– Partitioning techniques for accelerators and fusion

• Technology advancement through demonstration and
insertion of key new technology areas
– Design optimization loop for accelerators (w/ TOPS)
– Petascale mesh generation for accelerators

• Enabling future applications with ITAPS services and
interfaces
– Parallel mesh-to-mesh transfer for multi-scale, multi-

physics applications
– Dynamic mesh services for adaptive computations

82

Applications can access ITAPS
services in two ways

1. Implement ITAPS interfaces on top of application data
structures

2. Use a reference implementation of the interfaces to provide
access to ITAPS services at the cost of a data copy

Interface

Component
Service 3

High Level
Integrated Service

Application w/
Own Data Component

Service 2

Component
Service 1

Application using
ITAPS Implementation

Interface

ITAPS Implementation

Component
Service 3

High Level
Integrated Service Component

Service 2

Successful development of applications
requires close collaborations

83

Apply ITAPS developed technologies to
advance SciDAC applications

• Applications discussed today:
– Front tracking for Pellet Ablation in Tokamak Fuelling
– Parallel Adaptive Loop for Accelerator Design
– Adaptive mesh control for Extended MHD Simulations in

PPPL's M3D-C1 Code
– Element Curving Tool for Higher Order Finite Elements
– Mesh Generation for Nuclear Reactor Simulation
– Shape optimization

84

ITAPS Technologies

Mesh Geometry Relations FieldCommon
Interfaces

Component
Tools

Are unified
by

Petascale
Integrated

Tools

Build on

Mesh
Improve

Front
tracking

Mesh
Adapt

Interpolation
KernelsSwapping Dynamic

Services
Geom/Mesh

Services

AMR
Front tracking

Shape
Optimization

Solution
Adaptive

Loop

Solution
Transfer

Petascale
Mesh

Generation

c c You’ll hear about
many of these technologies

today

You’ll hear about
many of these technologies

today

85

ITAPS Technologies

Mesh Geometry Relations FieldCommon
Interfaces

Component
Tools

Are unified
by

Petascale
Integrated

Tools

Build on

Mesh
Improve

Front
tracking

Mesh
Adapt

Interpolation
KernelsSwapping Dynamic

Services
Geom/Mesh

Services

AMR
Front tracking

Shape
Optimization

Solution
Adaptive

Loop

Solution
Transfer

Petascale
Mesh

Generation

You’ll hear about
many of these technologies

today

You’ll hear about
many of these technologies

today

86

Provide interoperable services to speed
the development of simulation technologies

• Need for Services:
– Provide SciDAC applications ability to take advantage of

advanced tools for generation and control of meshes as
part of their simulations

• Focus:
– Initially provide prototype implementations for specific

SciDAC needs
• Mesh quality improvement
• Shape optimization
• Front tracking
• Mesh adaptation loops

– Current focus is on formalizing services to use ITAPS
interoperable interfaces

The Mesquite Mesh Quality
Improvement Toolkit

Patrick Knupp (SNL)
Lori Diachin (LLNL)

88

Improving mesh quality can
dramatically affect time to solution

• Mesh quality is the geometric properties of a mesh such as
shape, size, and orientation of elements

• Mesh quality affects solution accuracy, efficiency, stability

Freitag and
Ollivier-Gooch, 1998

Compressible Flow
• Mesh Optimized w/

Active set solver
– Improved the

convergence rate
by 25%

Mesh improvement
cost less than one
multigrid iteration

Compressible Flow
• Mesh Optimized w/

Active set solver
– Improved the

convergence rate
by 25%

Mesh improvement
cost less than one
multigrid iteration

Arteriovenous Graft Turbulent Flow Simulation

Optimized mesh traded four hours of applications solver time 19
minutes of mesh smoothing time.

Arteriovenous Graft Turbulent Flow Simulation

Optimized mesh traded four hours of applications solver time 19
minutes of mesh smoothing time.

89

Mesquite provides advanced mesh
smoothing capabilities

• Mesquite is a comprehensive, stand-alone
library for mesh quality improvement with the
following capabilities
– Shape Quality Improvement

– Mesh Untangling

– Alignment with Scalar or Vector Fields

– R-type adaptivity to solution features or error
estimates

• Maintain quality of deforming meshes

• Anisotropic smoothing

• Control skew on mesh boundaries

• Uses node point repositioning schemes

90

Mesquite is versatile and comprehensive

• 2/3D Structured, Unstructured, Hybrid
Meshes

• Element Types
– Triangular, Tetrahedral, Quadrilateral,

Hexahedral
– Prismatic, Pyramidal planned, Polyhedral

easily added
– Linear currently, higher-order planned

• Customizable
– User-defined metrics, objective functions, and

algorithms

• Callable as a library
– Mesh and geometry information obtained

through ITAPS accessor functions

91

The Mesquite infrastructure
provides advanced solution techniques

• State-of-the-art algorithms and metrics
– Simple (Laplace) to complex (optimization) smoothers
– Untangle, smooth, size, shape metrics

• Feasible Newton techniques
• Active set solvers

– Single-vertex and all-vertex solvers
– Mesh culling to eliminate un-needed operations
– Some metrics permit anisotropic smoothing

• Combined approaches
– Increase effectiveness and efficiency

• Efficient to run
– Kernels written with inline functions and array-based access
– Light-weight mesh data structure

92

Mesquite has been used extensively in
SciDAC settings

• SciDAC meshing groups
– MOAB (SNL)
– Cubit (SNL)
– Overture (LLNL)
– FMDB (RPI)
– NWGrid (PNNL)

• SciDAC applications
– SLAC (Tau3p), stability studies
– Climate Group (CSU), geodesic meshes
– SLAC, design optimization

• Non-SciDAC applications
– Nek5000 (ANL), arteriovenous graft
– ALEGRA (SNL), magneto-hydrodynamics
– ASCI ASAP Rocket Center, rocket

booster simulations (UIUC)

Mesquite used to
smooth geodesic
mesh for CSU SciDAC
Climate Group
In mesh quality vs.
accuracy study

Mesquite used to
smooth geodesic
mesh for CSU SciDAC
Climate Group
In mesh quality vs.
accuracy study

Mesquite used to adapt
meshes to new
geometry in SLAC
design optimization

Mesquite used to adapt
meshes to new
geometry in SLAC
design optimization

93

ITAPS mesh interfaces necessary for
using Mesquite

• Entity sets specify which elements to improve, entity
access functions, vertex coordinates, geom dim

• Adjacency information
– Build sets of vertices from an input set of elements
– Get elements from a vertex
– Get element connectivity

• Iterators over entity sets to populate local mesh
information in Mesquite
– Avoids large array copies

• Tags
– indicate which vertices are fixed
– saving state information
– setting reference ideal element information

94

ITAPS geometry interfaces needed for
surface smoothing

• Relax node positions to geometric domain
• Get surface normals

– Avoids large array copies

• Get the geometric entity type to determine
how many normals to cache

Triangular and Tetrahedral Mesh
Swapping Using ITAPS

Carl Ollivier-Gooch
University of British Columbia

96

Bird's Eye View

• 2D / 3D swapping with variety of criteria

• Single edge/face, mesh subset, or entire mesh

• Recursive swapping available

• User-defined swapping criteria

• Boundary modification optional in 3D

• Most typical usage will use four calls:
setMeshData

setAssocData

setQualMeasure

swapAll

97

Swapping Operations
Face Swapping in 3D

Swappable

Unswappable

98

Swapping Criteria

• Built-in criteria
– Delaunay, maxmin (dihedral) angle, minmax sine

(dihedral) angle

• User-defined criteria
– Any single-valued criterion depending only on vertex

coordinates
double calcQuality(double coords[],
int coords_size);

– Can be minimized or maximized
bool shouldMinimize();

99

Driver for Swapping Entire Mesh

Initialize: create an iterator for all d-1–dimensional entities
Iterate: while swaps are still occuring ...

Iterate over mesh:
get next d-1–dimensional entity
swap that entity, if appropriate
recursively swap other nearby entities

Reset:
reset iterator for next pass

Finalize: delete iterator

100

Deciding Whether to Actually Swap

Finding Local Topology
2D: Edge → triangles → vertices
3D: Triangle → tetrahedra → vertices

Swapping is A Geometric Decision
Based on orientation and quality of entities

Getting Coordinate Data
Could fetch one vertex at a time

• Too much call overhead
Instead, use a block call

101

Changing Mesh Topology

• Out with the Old
– Remove interior of old configuration

– Delete d-dimensional entities first

– Then d-1-dimensional entities

• In with the New
– Create new d-1-dimensional entities from vertices

– Create new d-dimensional entities from d-1-
dimensional entities

102

Summary

• Full swapping implementation is non-trivial
• Service using standard interface can handle all the
tricky bits
• Implementation of approx ten functions can allow
anyone, with any mesh data structure, to take advantage
of this
• Most difficult is correct implementation of iterators
• Performance is a bit slow compared with native
implementation, but not disastrously so

ITAPS Mesh Adaptation Service

M. S. Shephard and X. J. Luo
Rensselaer Polytechnic Institute

104

Overview of ITAPS Adaptive Loop

• Operational components for an adaptive loop
– FEA solver
– Error estimation
– Mesh adaptation
– Field solution transfer
– Attributes mapping

• Size field definition
– Anisotropic size field

• Anisotropic size field tensor at each mesh vertex
– Isotropic size field

• Use a double value to define the edge length at each
mesh vertex

105

Adaptive Unstructured Mesh Methods:
Characteristics and Application

• ITAPS has unstructured mesh tools
• Some Basic Characteristics

– Meshes of mixed topologies and order easy
– Commonly used spatial decomposition for finite

element discretizations
– Data structures larger and more complex
– Solution algorithms can be more complex

• Some Advantages
– Mesh adaptation can account for curved domains
– General mesh anisotropy can be obtained
– Easy to create strong mesh gradations without

special numerical techniques
– Alignment with multiple curved geometric features

106

Muzzle Blast Example

• t=0.0

t=2e-4

t=4e-4

107

Maintaining “Structure” is of Value for
Pointwise Derivative Recovery

• Post-processing procedure for recovering conservative
wall shear stress has been observed to be sensitive to
near wall mesh “structure”.
– Coarse example of arterial

cross section

• Semi-structured mesh
adaptation added

108

Parallel Adaptive Simulation

initial
mesh

adapted
mesh

• Parallel Support Operations
– Interprocessor links
– Dynamic parallel partitioning
– Mesh migration
– Predictive balancing
– Parallel mesh adaptation

iM0

jM1 1P

0P
2P

109

– Virtual flow facility for patient specific surgical planning
– High quality patient specific flow simulations needed quickly
– Image patent, create model, apply adaptive flow simulation

Patient Specific Vascular
Surgical Planning

110

Abdominal Aorta Aneurysm

• Exercise conditions

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

The FronTier Lite ITAPS service
Brian Fix, Xiaolin Li, Y. Li and James Glimm

Stony Brook University

Zhiliang Xu and Roman Samulyak
Brookhaven National Laboratory

112

The front tracking method and
FronTier code

FronTier tracks a dynamically
moving manifold representing a
discontinuity or a moving boundary

FronTier features a meshed front
separating computational subdomains

FronTier can be combined with PDE solvers and other
scientific software packages in which a moving front is
of scientific importance

FronTier automatically resolves topological bifurcation

113

FronTier mesh and geometry

FronTier supports
independent surface
mesh (grid-free mesh),
and grid-based mesh
which interacts with
the structured volume
mesh.

Above left: independent surface mesh; above right:
grid-based surface mesh. Both for the simulation of
gravity-driven Rayleigh-Taylor instability.

114

FronTier interoperability

FronTier inter-operation with the Overture code
from LLNL
FronTier usesthe adaptive mesh refinement from
Overture code for the simulation of a Richtmyer-
Meshkov instability.

115

The comparison of a rotating slotted disk using the 5th
order level set and the FronTier (4th order) code.

FronTier vs. level set method

116

FronTier application: diesel jet

FronTier application to
the simulation of diesel
jet injection. The simulation
features the phase transition
at the jet interface and the
insertion of bubbles due to
atomization in the nozzle.

117

FronTier application: chaotic mixing

FronTier application to the
simulation of fluid interface
instability, induced by the
acceleration field.

The tracking of the fluid
interface provides sharp,
high resolution at the
interface and yields the best
result in agreement with
experiment.

118

FronTier service Capabilites:

• Tracking a meshed and dynamically moving front
• Optimization of mesh geometry and automatic

topological bifurcation of tangled front
• Implemented in 1D, 2D, and 3D
• In 1D and 2D, the tracking is grid-independent
• In 3D, choice of several tracking algorithms including

grid based tracking, grid free tracking, and locally grid
based tracking (recommended for both quality and
robustness).

• Can be run as a fluid code (gas dynamics) or called as
a toolkit library.

119

Conclusions:

The ITAPS FronTier service is simple to use and can be a
useful tool

We provide a toolkit for scientific applications in
which a dynamically moving front plays an important role in
physical problems.

The FronTier library provides Lagrangian lovers an accurate
package for surface propagation without experiencing the
complexity and repeating the work by themselves.

The ITAPS interface standardizes the FronTier Mesh
description and operation of the FronTier functions.

Dynamic Services (Zoltan)

Vitus Leung and Karen Devine
Sandia National Laboratories

121

Zoltan Toolkit: Data Services for
Dynamic Applications

Unstructured Communication
Distributed Data Directories

Data Migration Matrix Ordering

Dynamic Memory
Debugging

Dynamic Load
Balancing

Graph Coloring

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

122

Applications using Zoltan

Multiphysics
Simulations

x bA

=

Linear Solvers &
Preconditioners

Adaptive Mesh
RefinementContact Detection & Crash Simulations

Electronic Circuit
Simulations

1
2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1

2

Rg02
R

1
2

Rg01
R

1
2 C01

C

1
2 C02

C
12

L2

INDUCTOR

12
L1

INDUCTOR

12
R1

R

12
R2

R

1
2

Rl
R

1
2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C

1

2 Cm12
C

Particle-based
Biological Cell

Simulations

123

Zoltan Suite of Partitioners

Recursive Coordinate Bisection (Berger, Bokhari)
Recursive Inertial Bisection (Taylor, Nour-Omid)

Space Filling Curves (Peano, Hilbert)
Refinement-tree Partitioning (Mitchell)

Zoltan Hypergraph Partitioning
ParMETIS (U. Minnesota)

Jostle (U. Greenwich)

Hypergraph Partitioning
Hypergraph Repartitioning
PaToH (Catalyurek)

Geometric (coordinate-based) methods

Hypergraph and graph (connectivity-based) methods

124

ITAPS C Interface to Partitioners

• Given a loaded iMesh_Instance, mesh,
with iBase_EntitySetHandle, root_set

• Construct ITAPSZoltan object, itapsz
• Call partitioner from itapsz with number

of partitions, method, sub-method
• Partitions contained in mesh as tagged

entity sets upon return from partitioner
• Compile and run with MPI

PART 5: Using ITAPS: Approaches
and Experiences

126

NEEDED

• Case Study 1: New application for
nuclear reactor modeling

Mesh Generation for Nuclear
Reactor Simulation
Ahmed Ahmed KhamaysehKhamayseh and and

Valmor de Almeida
Oak Ridge National Laboratory

128128

Goals and People InvolvedGoals and People Involved

• Technical goals – Utilize and integrate the
ITAPS Geometry, Meshing, and Adaptivity
Services (GMAS) for Nuclear Reactor
Simulations

• People involved (Ahmed Ahmed KhamaysehKhamayseh and and
Valmor de Almeida—ITAPS, Glen Hansen
and Kevin Clarno---GNEP)

• ITAPS Services Used: Geom/Mesh
Services

129129

Modern Reactor Modeling and SimulationModern Reactor Modeling and Simulation

• Full-core geometry realism
• A multi-material, multi-region mathematical

domain
• Coupled multi-phenomena modeling

• Particle transport, heat & fluid flow, solid
mechanics

• Multi-meshing
• Application-based, interoperable meshes

• Advanced parallel algorithms
• Petascale computing

130130

Modeling Challenges Modeling Challenges –– Geometric ComplexityGeometric Complexity

fuel
rod

virtual
pin
sleeve

cooling
annulus

Fuel rod

hidden compact
sleeve

Japan’s HTTR 30MWt

131131

Meshing Challenges Meshing Challenges –– Problem ScaleProblem Scale

• 150 fuel elements (assemblies)

• 120 replaceable reflector blocks

• 72 permanent reflector blocks

• 144 control rod blocks

• 27 irradiation blocks

• Over 30,000 parts

• 3+ M elements per fuel block

• 1B elements full core

HTTR

132132

Modern Reactor Modeling and SimulationModern Reactor Modeling and Simulation

Geometry, Meshing, and Adaptivity Services
• Intend to provide geometry, meshing and adaptivity

services for multiphysics applications
• Handle multiple meshes for multiple PDE solvers for a

given geometry
• Follows the CCA and will provide services through ports
• Written in C++ and will incorporate C++/C libraries

directly, whereas FORTRAN libraries will be integrated via
CCA

• Has been used to provide meshing services for a neutron
transport simulation and a solvent extraction fluid flow
code in development

133133

Technology DevelopmentsTechnology Developments-- GMASGMAS

Description of ITAPS technologies
developed/applied

• Integrate geometry, meshing, and adaptivity software
(SciDAC, public domain, etc.) and provide services to
multiphysics, coupled, PDE’s solvers

• Developed or extended functionality of software in the area
of geometry modeling, meshing and adaptivity. On-demand-
basis development (as of now through short term projects)

• Aimed at large scale parallel computing

134134

ResultsResults

Results obtained and benefits afforded
the application

• Applications experience in gas-cooled reactors,
materials science, neutronics.

• Code and theory base in mesh adaptation,
multiphysics modeling, spatial searching, and
remapping.

135

NEEDED

• Case Study 2: Inserting adaptive mesh
refinement into a fusion application

Adaptive Mesh Control for Extended MHD
Simulations in PPPL's M3D-C1 Code

SCOREC, RPI
PPPL

137

Goals and People Involved

• Develop parallel adaptive simulation
technologies for extended MHD
simulations

• Andrew Bauer, Kenneth Jansen, Mark
Shephard, SCOREC, RPI

• Stephen Jardin, Nathaniel Ferraro, PPPL
• ITAPS Services Used: Solution

Adaptive
Loop

Mesh
Adapt

Dynamic
Services

138

Technology Developments

• Modified M3D-C1 structured code to use
unstructured meshes
– Interface to efficient unstructured mesh search algorithm
– Efficient use of C1 continuous shape functions for

unstructured meshes
– Reduced interprocessor communication bottlenecks

• Interfaced with mesh adapt software
– Size field based mesh adaptation based on two methods:

• Integrated field quantities
• Inter-element flux jump of Laplacian

139

L

Adaptive mesh provides substantial
improvement in results
Toroidal equilibrium problem that converges to steady state

SciDAC Application Area:
Pellet Ablation for Tokamak Fuelling

Roman Samulyak
Brookhaven National Laboratory

141

Goals and People Involved

• Technical goals of the ITAPS involvement
– Provide Adaptive Meshing and Front Tracking

technologies and software for “microscale” studies of
pellet ablation in tokamaks

– Provide subgrid models for multiscale coupling with
macroscale pellet simulation codes and transport codes

• People involved:
– R. Samulyak, T. Lu, BNL (ITAPS and OASCR base

funding)
– P. Parks, General Atomics (Application)

• ITAPS Services Used: Front
tracking

Mesh
Adapt

AMR
Front tracking

142

• Further development of Adaptive Meshing
technologies and Front Tracking for phase
boundaries

• Based on Front Tracking, an MHD code for the
detailed study of the pellet ablation physics has
been developed and validated. It includes

• Kinetic model for interaction with hot electrons
• Surface ablation model
• Equation of state with atomic processes
• Cloud charging and rotation models
• New conductivity model (ionization by electron impact)

Technology and Software
Developments

143

Macroscale Model: AMR
simulation of ablation flow in
plasma (Ravi Samtaney)
• Focus on plasma flow
• Ablation physics not resolved
(simplified analytical models)

Relation to Other Projects

Microscale Model: Front Tracking
simulation of pellet ablation
• Focus on detailed ablation physics,
ablation rates etc.
• Far field plasma evolution not
resolved

Both approaches are complementary.
Future goal is their coupling.

144

Distributions of the Mach number of
the ablation flow near the pellet

• Code validation and benchmarks with other hydro studies
• First systematic “microscale” MHD studies of pellet ablation
physics
• Revealed new properties of the ablation flow (supersonic
rotation of the ablation channel)
• Explained the factor of 2.2 reduction of the ablation rate in
hydrodynamic models with directional heating

• In the literature, it was incorrectly attributed to the directional heating;
we showed it was caused by Maxwellian electron heat flux vs.
monoenergetic

Simulation Results

145

Critical observation:
• Formation of the ablation channel and ablation rate
strongly depends on plasma pedestal properties and
pellet velocity

• Simulations suggest that novel pellet acceleration
technique (laser or gyrotron driven) are necessary for ITER

Simulation Results

Parallel Adaptive Loop for
Accelerator Design

SCOREC, RPI
SLAC

147

Goals and People Involved

• Provide automated adaptive mesh
control for the Omega3P FE eigensolver
used to calculate RF cavity frequencies

• Several people from RPI SCOREC
• Simmetrix Inc.
• Lixin Ge, Liequan Lee, Zenghai Li, Cho

Ng, Inam Ur Rahman, Yong Sun and
Kwok Ko from SLAC

• ITAPS Services Used:
Solution
Adaptive

Loop
Mesh
Adapt

Dynamic
Services

Geom/Mesh
Services

148

Components in adaptive loop for SLAC

Using geometry operators
means alternate solid
modelers can be inserted

Using geometry operators
means alternate solid
modelers can be inserted

Using ITAPS mesh operators
means alternate mesh generators
and mesh adaptation procedures
can be inserted

Using ITAPS mesh operators
means alternate mesh generators
and mesh adaptation procedures
can be inserted

Using ITAPS field operators
allows easy construction of
alternative error estimatorsProjection-based error estimator

used to construct new mesh size
field given to mesh modification

Mesh adaptation based on
local modification linked
directly to CAD

Mesh adaptation based on
local modification linked
directly to CAD

Unaltered
SLAC code
Unaltered

SLAC code

Error estimators
from RPI and SLAC
Error estimators

from RPI and SLAC

149

Adaptive Loop for SLAC
Accelerator Design

– Geometry defined in CAD modeler
– Omega3P code from SLAC
– High level modeling accuracy needed
– Adaptive mesh control to provide accuracy needed
– Adaptive loop runs in serial and parallel

150

Adaptive Loop for Accelerator Design

Adapted mesh (23,082,517 tets)Initial mesh (1,595 tets)

151

NEEDED

• Case Study 3: Using Several tools in
concert for shape optimization in
accelerator cavities

DDRIV: Geometry & Mesh Services
for Shape Optimization

Tim Tautges, ANL
ITAPS, SLAC, TOPS

153

Goals and People Involved

• Technical goals:
– Develop shape optimization for accelerator cavity

tuning and de-tuning, and for reverse engineering as-
assembled cavity shape

– ITAPS provides the geometry control and meshing
components

• People involved:
– SLAC: Rich Lee, Cho Ng, Volkan Ancelik
– ITAPS: Tim Tautges and Pat Knupp
– TOPS: Volkan Ancelik and Omar Ghattas

• ITAPS Services Used: Shape
Optimization

Geom/Mesh
ServicesSmoothing

Omega3P,
Sensitivity,
Optimization

p0
G(p0) m(p0)CUBIT

Iteration 0:
ip∂

∂ Γx

p
k

G(pk) m0’Ddriv

…

Fixed mesh topology:
Convergence
No re-meshing
Re-use factorization

Ddriv

Iteration 1..k:

Ddriv

Ddriv

• Optimizing a cavity design is still mostly a manual process
• Future accelerators employ complex cavity shapes that require optimization to improve

performance

• Geometry & meshing support:

RIA

ILC

LCLS

Shape Optimization for
Accelerator Cavity Design

bl
al a1 a2

b1

ar
br

b

ra1 ra2

zcl zcrzcbzcc

zcll

• Generate new geometric model G(p’)
given a parameter vector p’

– MkILCCell function

• Associate old mesh m(po)
to new geometry G(p’),

project to CAD

• Smooth mesh

Smooth Curves Smooth VolumeSmooth Surfaces

New geom,
old mesh

Project to CAD,
inverted elements

Shape Optimization for
Accelerator Cavity Design

– DDRIV
– CGM (iGeom)

– DDRIV
– CGM (iGeom)
– MOAB (iMesh)
– LASSO (iRel)

– …
– Mesquite

• Compute “design velocity”
– Deform each parameter & smooth affected surfaces
– Compute using finite difference

• Convergence of :

ip∂
∂ Γx

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0 20000 40000 60000
tets

dv
 o

r a
re

a s100 area
s100 dv contrib
integrated dv

0

0.01

0.02

0.03

0.04

0.05

0.06

1.0E-081.0E-071.0E-061.0E-051.0E-041.0E-031.0E-021.0E-01 dp

dv

s100 dv
contrib
integrated
dv

()∫ • dSnV

vs. h vs. param step size dp

Whole
model:

Surf 206:

• Why not use parametric surfaces &
analytic derivatives?

– Parameter bounds change
– Some surfaces not analytic
– Not as flexible as current

approach

ip∂
∂ Γx

b

Shape Optimization for
Accelerator Cavity Design

157

Services Provided by DDRIV

• Parameterized geometric model construction
– You write function which constructs model using

iGeom
– DDRIV acts as driver and handles IO

• Coordination of mesh smoothing on geometric model
• Re-classification of “old” mesh on “new” model
• Target matrix-based smoothing of re-classified mesh
• Computation of design velocities & embedding on

mesh using iMesh Tags

158

NEEDED

• Best practices – is this really the best
place? Get slides from earlier

PART 6: ITAPS Software

160

ITAPS Software Web Pages

• Provides help getting started
• Usage strategies
• Data model description
• Access to interface

specifications, documentation,
implementations

• Access to compatible services
software

http://www.itaps- scidac.org/software/

161

Interface Software Access

• Links to the interface user
guides and man pages where
available

• Links to the C-binding and
SIDL-binding files

• Links to implementations for
iMesh, iGeom, iRel
– Version 0.7 compatible software
– Links to the home pages for

more information
• Simple examples, compliance

testing tools and build
skeletons coming soon

162

Services Software Access

• Links to the services built on
the ITAPS interfaces

• Currently or very soon to be
available
– Mesquite (C, SIDL)
– Zoltan (C, SIDL)
– Swapping (SIDL)
– Frontier (SIDL)
– VisIt Plug In (C, SIDL)

• Links to home pages for more
information

• Instructions for build and links
to supporting software

Future Directions

164

Terascale computing support is a
near term consideration

• Requirements document is nearly complete
• Interfaces will build on existing, supported

functionality
– In the data model (e.g., entity sets)
– In the underlying TSTT tools (e.g., FMDB, MOAB)

• Supports distributed mesh representation
• Available services

– Invariant entity handles (unique and unchanged even with mesh
migration and mesh modification in parallel)

– Mesh migration: global or local
– In existing services (e.g., Zoltan)

• Requires additional interface work
– Local/Global map conventions and behavior
– Convenience functions for ghost node support, etc.
– Mechanisms for mesh and user-data transfer

165

Requirements document in place
for parallel interfaces

• Targeting Distributed Memory (MIMD) programming models
while not preventing use of shared-memory/global address
space models

• Will define the concept of a ‘partition’ in the ITAPS interfaces to
describe
– distribution of data across processors
– Basic information about partition assignment of entities
– Interprocessor communication patterns
– Ghost entities
– Boundary entities
– Global Mesh Characteristics

• Will support reading and writing of parallel files from arbitrary
numbers of processors

• Provide initial distribution of data to processors
• Will make interface calls asynchronous whenever possible

166

Future plans

• Distribution/repository of implementations /
services (GForge)

• PR, tutorials, etc., to gain mindshare
• Follow-on activities to build on current

success:
– Fields interface
– Solution transfer
– Fine-grained AMR service
– Parallel mesh/data migration
– Shape optimization services
– Hybrid mesh representation tools
– Lots of application-focused efforts

167

Acknowledgments

– ANL: Tim Tautges
– LLNL: Lori Diachin, Mark Miller, Kyle Chand, Tammy

Dahlgren
– PNNL: Harold Trease
– RPI: Mark Shephard, Ken Jansen, Eunyoung Seole,

Andy Bauer, Xiaojnan Luo
– SNL: Vitus Leung, Karen Devine
– SUNY SB: Xiaolin Li, Brian Fix, Ryan Kaufman
– UBC: Carl Ollivier-Gooch
– U Wisconsin: Jason Kraftcheck

– ANL: Tim Tautges
– LLNL: Lori Diachin, Mark Miller, Kyle Chand, Tammy

Dahlgren
– PNNL: Harold Trease
– RPI: Mark Shephard, Ken Jansen, Eunyoung Seole,

Andy Bauer, Xiaojnan Luo
– SNL: Vitus Leung, Karen Devine
– SUNY SB: Xiaolin Li, Brian Fix, Ryan Kaufman
– UBC: Carl Ollivier-Gooch
– U Wisconsin: Jason Kraftcheck

We thank all those who have contributed to the
ITAPS interface definition effort and software!

168

Contact Information

• ITAPS Web Page:
http://www.itaps-scidac.org

• ITAPS Software Page:
http://www.itaps-scidac.org/software

• Email: itaps-mgnt@llnl.gov
• Tutorial Presenters:

Lori Diachin, LLNL
diachin2@llnl.gov

Mark Shephard, RPI
shephard@scorec.rpi.edu

Tim Tautges, ANL
tautges@mcs.anl.gov

169

EXTRA SLIDES

Element Curving Tool for Higher
Order Finite Elements

SCOREC, RPI
SLAC

171

Goals and People Involved

• Build a stand alone tool to construct
valid curvilinear meshes for the higher
order finite element method applied in
SLAC for accelerator design

• Xiaojuan Luo (RPI)
Mark S. Shephard (RPI)
Lie-Quan Lee (SLAC)

• ITAPS Services Used: Geom/Mesh
Services

Mesh
Adapt

172

Technology Developments

• Bezier higher order mesh shape representation
– Analytical validity determination to ensure validity of all

points in the element closure
– Determine key mesh entity causing invalidity

• Apply curved local mesh modifications to correct invalid mesh
entities
– Reshape, split, collapse, swap and refinement

Curved Edge Split to
Fix Model Tangency

Curved Region Split

Reshape

173

Results

• Initial mesh
– 108k mesh regions
– 250 invalid regions
– Solution blows-up unless

negative contribution removed
• Corrected mesh

– No invalid regions
– Solution process 37.8% faster (CG

iterations per time step reduced)

Valid curved mesh after operations
Electromagnetic analysis for SLAC

174

Results

Mesh before and after correcting the
invalid regions marked as yellow

A dipole mode from Omega3P

2.97M regions by correcting 1,357 invalid curved regions

~22 hours on 1024 CPUs on Seaborg at NERSC for 16 modes with
about 20 million DOFs

ILC cryomodule consisting of 8 TDR cavities

