
New iMesh paper draft

Draft of April 2, 2008

1 Introduction

Creating simulation software for problems described by partial differential equations is a
relatively common but very time-consuming task. Much of theeffort of developing a new
simulation code goes into writing infrastructure for taskssuch as interacting with mesh
and geometry data, equation discretization, adaptive refinement, design optimization, etc.
Because these infrastructure components are common to mostor all simulations, re-usable
software for these tasks would significantly reduce both thetime and expertise required to
create a new simulation code.

Currently, libraries are the most common mechanism for software re-use in scientific
computing, especially the highly-successful libraries for numerical linear algebra [?, ?,
?, ?, ?]. The drawback to software re-use through libraries is the difficulty in changing
from one to another. When a user wishes to add functionality or simply experiment with
a different implementation of the same functionality in another library, all calls within an
application must be changed to the other API. To make mattersworse, different libraries
rarely package functionality in precisely the same way. Another significant challenge with
library use, especially in the context of meshing and geometry libraries, is that data struc-
tures used within the libraries may be radically different,making changes from one library
to another even more onerous. This time-consuming conversion process can be a signifi-
cant diversion from the central scientific investigation, so many application researchers are
reluctant to undertake it. As a result, new advances from themeshing research community
often take years to become incorporated into application simulations.

Components represent a higher level of abstraction than libraries: essentially, a compo-
nent defines both a standard application programming interface (API) for the functionality
provided by a collection of analogous libraries and an abstract data model defining what
sorts of data are passed through the interface. Returning tothe familiar example of linear

1



algebra, a numerical linear algebra component would define astandard interface for oper-
ations like dot products, matrix-vector multiplication, and linear system solution, and its
abstract data model would include objects like vectors and matrices. A key advantage to
the use of components is that any service that uses the component API can interact with
any implementation of the API, including partial implementations designed to provide
only the functionality required by that service; we will return to this point in Sections 1.1
and 5.

This paper will describe a meshing component intended to support low-level mesh
access and manipulation. In addition, our interface is designed to support the requirements
of solver applications, including the ability to define meshsubsets and to attach arbitrary
user data to mesh entities. Also, our component is intended to be both language and data
structure independent. In summary, our initial target is tosupport low-level interaction
between applications programs — both meshing and solution applications — and external
mesh databases regardless of the data structures and programming language used by each.

The most prominent example of prior research in defining interfaces for meshing is
the Unstructured Grid Consortium, a working group of the AIAA Meshing, Visualization,
and Computing Environments Technical Committee [?]. The first release of the UGC in-
terface [?] was aimed at high level mesh operations, including mesh generation and quality
assessment. Recognizing a need for lower-level functionality, the UGC has developed a
low-level query and modification interface for mesh databases aimed exclusively at mesh-
ing operations, as well as an interface for defining generic high-level services [?]; results
of such queries in the UGC interface are explicitly expressed as integer indices into data
arrays. The low-level UGC interface is similar in scope to our API, although we have
deliberately been more general in providing support for functionality required by solvers
and in emphasizing data structure neutrality.

1.1 A Simple Use Case for a Meshing Component

Before we begin general discussion of the meshing componentwe have developed, let us
first consider a simple example illustrating how a scientificcomputing application could
benefit from using such a component. As an example of a typicalscientific computing
application, let us consider a finite element solver (FESolve) for some partial differential
equation, and how this application might continue to develop over time.1 When first writ-
ten, FESolve is a simple finite volume solver, using linear elements. At runtime, FESolve
loads a mesh from a file and does some pre-processing of the mesh to compute geometric
quantities (such as integration points and weights) and perhaps to compute some mesh

1While different applications will surely have different requirements for interacting with unstructured
mesh data, many, if not most, applications will follow roughly this same outline.

2



topological relationships that weren’t in the file. Then, for each iteration, FESolve iterates
over the elements in the mesh, computing the residual and thestiffness matrix for each,
and assembling these into a global linear system. This system is solved, and the solution
is updated at every node.

After FESolve has been in use for some time, its developers decide that mesh adap-
tation is required to improve solution accuracy. With current approaches to writing mesh
infrastructure software, they now face three choices: either to write their own mesh adap-
tation code; to change the data structures in FESolve so thatthey can use an existing mesh
adaptation code written by some other researcher; or to haveFESolve communicate with
an external mesh adapter through files. None of these approaches is ideal from the devel-
opers’ point of view, but eventually they pick one and start in.

Using a standard mesh component API makes this transition much less painful. The
developers choose mesh adaptation code that uses the component API to access mesh
data. They then add to FESolve implementations ofonly the functions in the APIactually
requiredfor mesh adaptation. Now their data, in their own internal data structures, can be
used directly by the mesh adaptation code without further integration.

As a bonus, in implementing part of the mesh component’s API,the FESolve develop-
ment team has simultaneously done some of the work that will be required when their users
start clamoring for other advanced capability (design optimization, for instance) which
could also be provided using the mesh component API.

1.2 The ITAPS Mesh Component

In this paper, we will describe a newly developed component intended to provide sup-
port for the mesh access and manipulation requirements of practical, large-scale scientific
computing applications. This component, developed as partof a larger project by the
Interoperable Tools for Advanced Petascale Simulation (ITAPS) center to develop inter-
operable software tools for meshes, domain geometry, and solution representation [?], is
called iMesh. Note the words “support for”: the iMesh component is not intended to be a
general interface to all possible meshing operations, but rather, to define the operations re-
quired at a mesh database level so that high-level operations — including mesh generation,
mesh improvement, mesh adaptation, and design optimization — can be implemented as
servicesthat use the iMesh component to store and manipulate mesh data. To be genuinely
useful to real applications and real application developers, the component must be

• general purpose: all mesh operations must be implementablebased on the iMesh
component.

3



• efficient: data access using the iMesh component must not come at too high a cost
in overhead.

• flexible: different applications may want to use different approaches for the same
task.

• interoperable: implementations of the component must be truly interchangeable,
and services designed to use the interface should work on a plug and play basis,
regardless of data structures and programming language.

Section 2 describes the design principles we followed to ensure that the iMesh component
met these goals. We first defined a data model (see Section 3): meshing operations require
information about mesh entities (like vertices, triangular faces, and hexahedral regions),
collections of entities, and meta-data associated with mesh entities. Using that data model,
we then defined an API that would support general meshing and mesh-related solver oper-
ations (see Section 4). In addition to defining the iMesh component, we have also used it
for various meshing and PDE solution tasks; several examples will be given in Section 5.
The paper will conclude with discussion of lessons learned from developing this compo-
nent, of the current status of software using the iMesh API, and of future prospects for
extension and application of the iMesh component.

2 Design Principles

In Section 1.2, we summarized our goals for the iMesh component. As design of the
component continued, we found that several principles recurred frequently in guiding our
design decisions as we worked towards those goals. Specifically, we found that we made
decisions to produce an interface that was:

Complete. Clearly, a minimal requirement is that all required mesh operations must be
possible, either intrinsically through the iMesh API or by building on it. Our guide
to whether the interface is complete has been our collectiveexperience — from quite
different perspectives — in meshing and solution algorithms. We feel that if we can
satisfy our collective needs, and those that we know are in use by others, that the
interface is complete enough for at least an initial release.

Run-time efficiency. For the iMesh component to be useful for applications it musthave
low overhead. Specifically, the interface must be designed so that an iMesh im-
plementation can provide data access and manipulation nearly as rapidly as native
access to the same mesh database. An example of the application of this principle

4



in the iMesh interface are the availability of both single-entity and array-of-entities
access to mesh data, each of which is more efficient under somebut not all circum-
stances.

Ease of use.We also wish to design an interface which is a relatively easyfor program-
mers to use. This implies an interface that is relatively compact on the one hand but
also provides direct access to relatively commonly used constructs, even at the ex-
pense of additional functions in the interface. For example, we recognize that certain
types of metadata – specifically, double, integer, and entity handle metadata – will
be very common and more easily handled both by iMesh implementations and appli-
cations if there are specific functions for these types. However, in addition to these
particular functions, we also provide in such cases a general access mechanism; in
this case, generic metadata is described using byte strings.

Flexibility. We recognize that different applications may choose to express the same se-
mantic content in different ways. Where feasible, the iMeshinterface supports this.
For example, one application may choose to represent boundary condition data by
metadata attached to particular mesh entities; another mayrepresent the same infor-
mation by collecting entities with the same boundary condition into a set. As another
example, some applications may choose to access data entityby entity while others
may prefer array access to data.

Extensibility. We have designed the interface to allow extensions to the low-level mesh
access functionality that interface defines. For example, arecent addition to the
iMesh interface is support for nonlinear shape of mesh entities. The support was
added to the iMesh interface without requiring changes to functions already in the
interface. As a second example, ongoing work for it parallelextension to the iMesh
interface leverages serial iMesh functionality for parallel usage where appropriate.

Simplified applications programming. One obvious way to simplify applications pro-
gramming is by making the iMesh interface as lightweight as possible. In addition,
wherever possible, the iMesh interface is designed to placedifficult tasks under the
control of the implementation rather than the application.A prime example of this
is in the area of memory management. An application, when requesting an array of
data, need not know in advance the size of the array. Instead,the application can pass
in an uninitialized array and implementation automatically allocates the appropriate
amount of memory for that array.

Interoperability. In the long-term, success of the iMesh component will dependon how
well the component truly supports interoperability. This is the key to being able

5



to leverage the effort in development of both implementations and services as well
as conversion of applications to use the interface. Interoperability, in turn, requires
not only the use of a standard interface, but also data structure and programming
language neutrality.

3 Data Model

In the iMesh data model, all mesh primitives — vertices (0D),edges (1D), faces (2D), and
regions (3D) — are referred to asentities. Mesh entities are collected together to form
entity sets. All topological and geometric mesh data2 is stored in aroot entity setand there
is a single root set for each computational domain; all otherentity sets are contained in the
root set. Many implementations will represent the root set as a database containing all of
the mesh entities, with other entity sets containing handles for these entities. Any iMesh
data object — an entity or any entity set including the root set — can have one or more
tagsassociated with it, so that arbitrary data can be attached tothe object. To preserve
data structure neutrality, all iMesh data objects are identified by opaque handles.

3.1 Mesh Entities

All the primitive components of a mesh are defined by the iMeshdata model toentities.
iMesh entities are distinguished by their entity type (effectively, their topological dimen-
sion) and entity topology; each topology has a unique entitytype associated with it. Ex-
amples of entities include a vertex, an edge, triangular or quadrilateral faces in 2D or 3D,
and tetrahedral or hexahedral regions in 3D; a complete catalog of entities supported by
iMesh is shown in Figure 1. Faces and regions have no interiorholes. Higher-dimensional
entities are defined by lower-dimensional entities using a canonical ordering.

3.2 Entity Adjacencies

Adjacencies describe how mesh entities connect to each other. For an entity of dimension
d, first-order adjacency returns all of the mesh entities of dimensionq which are on the
closure of the entity for downward adjacency (d > q), or for which the entity is part of
the closure for upward adjacency (d < q), as shown in Figure 2(a) and (b). For a particu-
lar implementation, not all first-order adjacencies are necessarily available. For instance,
in a classic finite element element-node connectivity storage, requests for faces or edges

2Geometric mesh datais geometric data required to define shapes of mesh entities.This is distinct from
geometric model data, which defines the shapes of the problem domain.

6



Tetrahedron

Prism

Hexahedron

Pyramid

Septahedron

Polyhedron

Point

Line Segment

Triangle

Quadrilateral

Polygon

Edge

Vertex Face Region

Figure 1: Entities supported by the iMesh component, including the ordering of the lower-
dimensional entities on their closure.

adjacent to an entity may return nothing, because the implementation has no stored data
to return. For first-order adjacencies that are available inthe implementation, the imple-
mentation may store the adjacency information directly, orcompute adjacencies by either
a local traversal of the entity’s neighborhood or by global traversal of the entity set. Each
iMesh implementation must provide information about the availability of and relative cost
of first-order adjacency queries.

For an entity of dimensiond, second-order adjacencies describe all of the mesh entities
of dimensionq that share any adjacent entities of dimensionb, whered 6= b andb 6= q.
Second-order adjacencies can be derived from first-order adjacencies. Note that, in the
iMesh data model, requests such as all vertices that are neighbors to a given vertex are
requests for second-order adjacencies.

Examples of adjacency requests include: for a given face, the regions on either side of
the face (first-order upward); the vertices bounding the face (first-order downward); and
the faces that share any vertex with the face (second-order).

7



(a) Downward adjacency; edges
adjacent to a face, vertices adja-
cent to an edge.

(b) Upward adjacency: edges
adjacent to a vertex, faces adja-
cent to an edge.

(c) Second adjacency; red edges
are adjacent to vertices adjacent
to the red face.

Figure 2: Examples of adjacency relationships between meshentities.

3.3 Entity Sets

The iMesh data model includes the notion of arbitrary groupings of entities; these group-
ings are calledentity sets. Each entity set may be a true set (in the set theoretic sense)
or it may be a (possibly non-unique) ordered list of entities; in the latter case, entities are
retrieved in the order in which they were added to the entity set. An entity set also may
or may not be a simple mesh; entity sets thatare simple meshes have obvious applica-
tion in multiblock and multigrid contexts, for instance. Entity sets (other than the root
set) are populated by addition or removal of entities from the set. In addition, set boolean
operations — subtraction, intersection, and union — are also supported.

Two primary relationships among entity sets are supported.First, entity sets may con-
tain one or more entity sets (by definition, all entity sets belong to the root set). An entity
set contained in another may be either a subset or an element (each in the set theoretic
sense) of that entity set. The choice between these two interpretations is left to the ap-
plication; the iMesh interface does not impose either interpretation. Set contents can be
queried recursively or non-recursively; in the former case, if entity set A is contained in
entity set B, a request for the contents of B will include the entities in A (and the entities
in sets contained in A). Second, parent/child relationships between entity sets are used
to represent logical relationships between sets, including multigrid and adaptive mesh se-
quences. These logical relationships naturally form a directed, acyclic graph.

Examples of entity sets include the ordered list of verticesbounding a geometric face,
the set of all mesh faces classified on that geometric face, the set of regions assigned to
a single processor by mesh partitioning, and the set of all entities in a given level of a
multigrid mesh sequence.

8



3.4 Tags

Tags are used as containers for user-defined data that can be attached to iMesh entities,
meshes, and entity sets. Different values of a particular tag can be associated with different
mesh entities; for instance, a boundary condition tag will have different values for an
inflow boundary than for a no-slip wall. In the general case, iMesh tags do not have a
predefined type and allow the user to attach arbitrary data tomesh entities; this data is
stored and retrieved by implementations as a bit pattern. Toimprove performance and
ease of use, we support three specialized tag types: integers, doubles, and handles. These
typed tags enable correct saving and restoring of tag data when a mesh is written to a file.

3.5 Meshes

To be useful to applications, information in the root set or one or more of its constituent
entity sets is assumed to be a valid computational mesh, examples of which include:

• A non-overlapping, connected set of iMesh entities; for example, the structured and
unstructured meshes commonly used in finite element simulations (simple mesh).

• Overlapping grids in which a collection of simple meshes areused to represent some
portion of the computational domain, including chimera, multiblock, and multigrid
meshes (multiple mesh). The interfaces presented here handle these mesh types in
a general way; higher-level convenience functions may be added later to support
specific functionalities needed by these meshes. In this case, each of the simple
meshes is a valid computational mesh, stored as an entity set.

• Adaptive meshes in which all entities in a sequence of refined(simple or multiple)
meshes are retained in the root set. The most highly refined adaptation level typically
comprises a simple or multiple mesh. Typically, different levels of mesh adaptation
will be represented by different entity sets, with many of the entities shared by mul-
tiple entity sets.

• Smooth particle hydrodynamic (SPH) meshes, which consist of a collection of iMesh
vertices with no connectivity or adjacency information.

At the most fundamental level, we consider a static simple mesh. This mesh provides
only basic query capabilities to return entities and their adjacencies. This implies that all
implementations have a root set, but not necessarily the subsetting capabilities described
in Section 3.3.3.

9



In addition, meshes can also be extended to be modifiable, through support for creation
and deletion of mesh entities (see Section??.4.3). Modifiable meshes require a minimal
interaction with the underlying geometric model to uniquely associate mesh entities with
geometric model entities of equal or greater dimension[?].

4 Interface Functionality

The iMesh interface supports a variety of commonly needed functionalities for mesh and
entity query, mesh modification, entity set operations, andtags. All data passed through
the interface is in the form of opaque handles to objects defined in the data model. In this
section we describe the functionality available through the iMesh interface.3 For listings
of allowable values of all ITAPS enumerated data types and a concrete example of the full
call sequence for functions with arrays and strings, see Appendix??.

4.1 Global Queries

Global query functions can be categorized into two groups: 1) database functions, that
manipulate the properties of the database as a whole and 2)set query functions, that query
the contents of entity sets as a whole; these functions require an entity set argument, which
may be the root set as a special case. These functions are summarized in Table 1.

Database functions include functions to create and destroymesh instances; note that
the create function only sets up data structures for the meshinstance, without supplying
any mesh data. The load and save functions read and write meshinformation from files;
file format and read/write options are implementation dependent. As mesh data is loaded,
entities are stored in the root set, and can optionally be placed into a subsidiary entity
set as well. iMesh implementations must be able to provide coordinate information in
both blocked (xxx...yyy...zzz...) and interleaved (xyzxyzxyz...) formats; an application
can query the implementation to determine the implementation’s preferred storage order.
Also, implementations must provide information about the availability and relative cost of
computing adjacencies between entities of different types. Finally, each instance of the
interface must provide a handle for the root set.

Set query functions allow an application to retrieve information about entities in a
set. The entity set may be the root set, which will return selected contents of the entire
database, or may be any subsidiary entity set. For example, functions exist to request the
number of mesh entities of a given type or topology; the typesand topologies are defined as

3Note that these descriptions do not include detailed syntax, which can be found in the interface user
guide[?, ?].

10



Table 1: Functions for Global Queries
Function Description

iMesh_newMesh Creates a new, empty mesh instance
iMesh_dtor Destroys a mesh instance
iMesh_load Loads mesh data from file into entity set
iMesh_save Saves data from entity set to file
iMesh_getRootSet Returns handle for the root set
iMesh_getGeometricDimReturns geometric dimension of mesh
iMesh_getDfltStorageTells whether implementation prefers blocked or

interleaved coordinate data
iMesh_getAdjTable Returns table indicating availability and cost of en-

tity adjacency data
iMesh_areEHValid Returns true if EH remain unchanged since last

user-requested status reset

iMesh_getNumOfTypeReturns number of entities of type in ES
iMesh_getNumOfTopoReturns number of entities of topo in ES
iMesh_getAllVtxCoordsReturns coords of all vertices in the set and all ver-

tices on the closure of higher-dimensional entities
in the set; storage order can be user-specified

iMesh_getEntities Returns all entities in ES of the given type and
topology

iMesh_getAdjEntitiesFor all entities of given type and topology in ES,
return adjacent entities of adj_type

iMesh_getAllVtxCoordsFor all vertices, return coords; storage order can be
user-specified.

iMesh_getVtxArrCoordsFor all input vertex handles, return coords; storage
order can be user-specified.

iMesh_getVtxCoordIndexFor all entities of given type and topology, find ad-
jacent entities of adj_Type, and return the coor-
dinate indices for their vertices. Vertex ordering
matches that in getAllVtxCoords.

11



Table 2: Functions for Single Entity Queries
Function Description

iMesh_initEntIter Create an iterator to traverse entities of type and
topo in ES; return true if any entities exist

iMesh_getNextEntIterReturn true and a handle to next entity if there is
one; false otherwise

iMesh_resetEntIter Reset iterator to restart traverse from the first entity
iMesh_endEntIter Destroy iterator

iMesh_getType Return type of entity
iMesh_getTopo Return topology of entity
iMesh_getVtxCoord Return coordinates of a vertex
iMesh_getEntAdj Return entities of given type adjacent to EH
iMesh_getEntArrAdj Return entities of given type adjacent to entities of

a second type adjacent to EH

enumerations. Applications can request handles for all entities of a given type or topology
or handles for entities of a given type adjacent to all entities of a given type or topology.
Also, vertex coordinates are available in either blocked orinterleaved order. Coordinate
requests can be made for all vertices or for the vertex handles returned by an adjacency
call. Finally, indices into the global vertex coordinate array can be obtained for both entity
and adjacent entity requests.

4.2 Entity- and Array-Based Query

The global queries described in the previous section are used to retrieve information about
all entities in an entity set. While this is certainly a practical alternative for some types
of problems and for small problem size, larger problems or situations involving mesh
modification require access to single entities or to blocks of entities. The iMesh interface
supports traversal and query functions for single entitiesand for blocks of entities; the
query functions supported are entity type and topology, vertex coordinates, and entity
adjacencies. Tables 2 and 3 summarize these functions.

4.3 Mesh Modification

The iMesh interface supports mesh modification by providinga minimal set of operators
for low-level modification; both single entity (see Table 4)and block versions (see Table 5)

12



Table 3: Functions for Block Entity Queries
Function Description

iMesh_initEntArrIter Create a block iterator to traverse entities of type
and topo in ES

iMesh_getNextEntArrIterReturn true and a block of handles if there are any;
false otherwise

iMesh_resetEntArrIterReset block iterator to restart traverse from the first
entity

iMesh_endEntArrIter Destroy block iterator

iMesh_getEntArrTypeReturn type of each entity
iMesh_getEntArrTopoReturn topology of each entity
iMesh_getEntArrAdj Return entities of type adjacent to each EH
iMesh_getEntArr2ndAdjReturn entities of given type adjacent to entities of

a second type adjacent to each EH

Table 4: Functions for Single Entity Mesh Modification
Function Description

iMesh_createVtx Create vertex at given location
iMesh_setVtxCoords Changes coordinates of existing vertex
iMesh_createEnt Create entity of given topology from lower-

dimensional entities; return entity handle and cre-
ation status

iMesh_deleteEnt Delete EH from the mesh

of these operators are provided. High-level functionality, including mesh generation, qual-
ity assessment, and validity checking, can in principle be built from these operators, al-
though in practice such functionality is more likely to be provided using intermediate-level
services that perform complete unit operations, includingvertex insertion and deletion
with topology updates, edge and face swapping, and smoothing.

Geometry modification is achieved through functions that change vertex locations.
Vertex locations are set at creation, and can be changed as required, for instance, by mesh
smoothing or other node movement algorithms.

Topology modification is achieved through the creation and deletion of mesh entities.
Creation of higher-dimensional entities requires specification, in canonical order, of an
appropriate collection of lower-dimensional entities. For instance, a tetrahedron can be
created using four vertices, six edges or four faces, but notfrom combinations of these.

13



Table 5: Functions for Block Mesh Modification
Function Description

iMesh_createVtxArr Create vertices at given location
iMesh_setVtxArrCoordsChanges coordinates of existing vertices
iMesh_createEntArr Create entities of given topology from lower-

dimensional entities; return entity handle and status
iMesh_deleteEntArr Delete each EH from the mesh

Upon creation, adjacency information properly connectingthe new entity to its compo-
nents is set up by the implementation. Some implementationsmay allow the creation of
duplicate entities (for example, two edges connecting the same two vertices), while others
will respond to such a creation request by returning a copy ofthe already-existing entity.

Deletion of existing entities must always be done from highest to lowest dimension,
because the iMesh interface forbids the deletion of an entity with existing upward adja-
cencies (for instance, an edge that is still in use by one or more faces or regions).

4.4 Entity Shape

Information about the shape of mesh entities is essential for support of high order accurate
solution. Complicating matters, representation of curvedmesh entities can be formulated
in more than one way, including interpolation, approximation, analytic forms, and CAD
data. In each of these formulations, however, point-wise geometric information is used to
build up the required higher-order shapes of mesh entities.For example, Figure 3 shows
the Lagrange interpolating and Bezier approximating shapes for mesh entities with con-
stant or variable orders with a set of nodes used to representthe higher-order shape for
mesh edges and faces. iMesh support for curved mesh entitiesfocuses on specifying which
form of geometric approximation is in use — so that an application capable of handling
multiple types can distinguish between them — and the locations of the control points.
Mesh shape functionality is designed to make common usage — notably equal-order La-
grange finite elements — easy, while still allowing less common, more complicated usage
— such asp-refinement, or spectral elements, for instance. As such, global functions exist
for initializing mesh entity shapes across the entire mesh,including not only creation of
high-order nodes but initialization of their locations. Ata more fine-grained level, nodes
can be created as ordinary vertices and associated with higher-dimensional entities either
entity-by-entity or node-by-node. For equal order entities, creation of and access to high
order nodes for a mesh entity and its closure (for example, for the interior of a hexahedron
and its bounding faces and edges) can be handled in a single call. Mixed-order elements

14



Mixed−order
Bezier

Mixed−order
LagrangeLagrange

Bezier

Figure 3: Examples of high-order, curved mesh entities

require a lower-level approach from the application, but weexpect that writers ofp-refined
finite-element solvers will have the expertise for this. Finally, adjacency information for
high-order nodes — such as the identities of all hexahedra incident on a mid-edge node —
is accessed by first finding the mesh entity that a node is associated with, and then finding
adjacencies for that entity.

4.5 Entity Sets

Entity set functionality in the iMesh interface is divided into three parts: basic set func-
tionality, hierarchical set relations, and set boolean operations.

Basic set functionality, summarized in Table 7, includes creating and destroying entity
sets; adding and removing entities and sets; and several entity set specific query functions.
4 Entity sets can be either ordered and non-unique, or unordered and unique; an ordered
set guarantees that query results (including traversal) will always be given in the order in
which entities were added to the set. The ordered/unorderedstatus of an entity set must be

4Note that the global mesh query functions (Section??.4.1) and traversal functions (Section??.4.2)
defined above can be used with the root set or any other entity set as their first argument.

15



Table 6: Functions for High-Order Entity Shape
Function Description

iMesh_hasMeshShapesDetermine with the mesh contains high order
shapes of given shape type

iMesh_createMeshShapesCreate higher order shapes with the specified shape
type and order for the mesh

iMesh_hasEntShape Determine with an entity has high order shapes of
given shape type

iMesh_getEntShapeOrderGet the order of the higher order mesh entity shape

iMesh_createEntShapesCreate high order shapes for a single entity
iMesh_deleteEntShapesDelete high order nodes for an entity
iMesh_getEntShapesReturn high order nodes for an entity

iMesh_setVtxParam Set parametric coordinates of high order node
iMesh_getVtxParam Get parametric coordinates of high order node
iMesh_setNodeToEntAssociate a high order node with a mesh entity
iMesh_getEntOfNodeReturn the mesh entity on which a high order node

lies

iMesh_hasEntArrShapeDetermine whether an array of entities have high
order shapes of given shape type

iMesh_getEntArrShapeOrderGet the order of the high order mesh entity shape
for multiple entities

iMesh_createEntArrShapesCreate high order shapes for multiple entities
iMesh_deleteEntArrShapesDelete high order nodes for entities
iMesh_getEntArrShapesReturn high order nodes for entities

iMesh_setVtxArrParamSet parametric coordinates of high order nodes
iMesh_getVtxArrParamGet parametric coordinates of high order nodes
iMesh_setNodeArrToEntAssociate high order nodes with mesh entities
iMesh_getEntArrOfNodeReturn the mesh entities on which high order nodes

lie

16



Table 7: Functions for Basic Entity Set Functionality
Function Description

iMesh_createEntSet Creates a new entity set (ordered and non-unique if
isList is true)

iMesh_destroyEntSetDestroys existing entity set
iMesh_isList Return true if the set is ordered and non-unique

iMesh_getNumEntSetsReturns number of entity sets contained in SH
iMesh_getEntSets Returns entity sets contained in SH
iMesh_addEntSet Adds entity set SH1 as a member of SH2
iMesh_rmvEntSet Removes entity set SH1 as a member of SH2
iMesh_isEntSetContainedReturns true if SH2 is a member of SH1

iMesh_addEntToSet Add entity EH to set SH
iMesh_rmvEntFromSetRemove entity EH from set SH
iMesh_addEntArrToSetAdd array of entities to set SH
iMesh_rmvEntArrFromSetRemove array of entities from set SH
iMesh_isEntContainedReturns true if EH is a member of SH

specified when the set is created and can be queried.
Entity sets are created empty. Entities can be added to or removed from the set indi-

vidually or in blocks; for ordered sets, the last of a number of duplicate entries will be the
first to be deleted. Also, entity sets can be added to or removed from each other; note that,
because all sets are automatically contained in the root setfrom creation, calls that would
add or remove a set from the root set are not permitted. An entity set can also be queried
to determine the number and handles of sets that it contains,and to determine whether a
given entity or set belongs to that set.

Hierarchical relationships between entity sets are intended to describe, for example,
multilevel meshes and mesh refinement hierarchies. The directional relationships implied
here are labeled as parent-child relationships in the iMeshinterface. Functions are pro-
vided to add, remove, count, and identify parents and children and to determine if one set
is a child of another; see Table 8.

Set boolean operations — intersection, union, and subtraction — are also defined by
the iMesh interface; these functions are summarized in Table 9. The definitions are in-
tended to be compatible with their C++ standard template library (STL) counterparts, both
for semantic clarity and so that STL algorithms can be used byimplementations where ap-
propriate. All set boolean operations apply not only toentitymembers of the set, but also
to setmembers. Note that set hierarchical relationships are not included: the set result-

17



Table 8: Functions for Entity Set Relationships
Function Description

iMesh_addPrntChld Create a parent (SH1) to child (SH2) relationship
iMesh_rmvPrntChld Remove a parent (SH1) to child (SH2) relationship
iMesh_isChildOf Return true if SH2 is a child of SH1
iMesh_getNumChld Return number of children of SH
iMesh_getChldn Return children of SH
iMesh_getNumPrnt Return number of parents of SH
iMesh_getPrnts Return parents of SH

Table 9: Functions for Entity Set Boolean Operations
Function Description

iMesh_subtract Return set difference SH1-SH2 in SH
iMesh_intersect Return set intersection of SH1 and SH2 in SH
iMesh_unite Return set union of SH1 and SH2 in SH

ing from a set boolean operation on sets with hierarchical relationships willnot have any
hierarchical relationships defined for it, regardless of the input data. For instance, if one
were to take the intersection of two directionally-coarsened meshes (stored as sets) with
the same parent mesh (also a set) in a multigrid hierarchy, there is no reason to expect that
the resulting set will necessarily be placed in the multigrid hierarchy at all. On the other
hand, if both of those directionally-coarsened meshes contain a set of boundary faces, then
their intersection will contain that set as well.

While set boolean operations are completely unambiguous for unordered entity sets,
ordered sets make things more complicated. For operations in which one set is ordered
and one unordered, the result set is unordered; its contentsare the same as if an unordered
set were created with the (unique) contents of the ordered set and the operation were then
performed. In the case of two ordered sets, the iMesh specification tries to follow the spirit
of the STL definition, with complications related to the possibility of multiple copies of a
given entity handle in each set. We recognize that these rules are somewhat arbitrary, but
have been unable to find a more systematic way of defining theseoperations for ordered
sets. In the following discussion, assume that a given entity handle appearsm times in the
first set andn times in the second set.

• For intersection of two ordered sets, the output set will contain the min(m,n) copies
of the entity handle. These will appear in the same order as inthe first input set,
with the first copies of the handle surviving. For example, intersection of the two

18



Table 10: Basic Tag Functions
Name Description

iMesh_createTag Creates a new tag of the given type and number of
values

iMesh_destroyTag Destroys the tag if no entity is using it or if force is
true

iMesh_getTagName Returns tag ID string
iMesh_getTagSizeValuesReturns tag size in number of values
iMesh_getTagSizeBytesReturns tag size in number of bytes
iMesh_getTagHandleReturn tag with given ID string, if it exists
iMesh_getTagType Return data type of this tag

iMesh_getAllTags Return handles of all tags associated with entity EH
iMesh_getAllEntSetTagsReturn handles of all tags associated with entity set

SH

setsA = { abacdbca} and B = {dadbac} will result in A
⋂

B = {abacd}.

• Union of two ordered sets is easy: the output set is a concatenation of the input sets:
A

⋃
B = {abacdbcadadbac}.

• Subtraction of two ordered sets results in a set containing min(m−n,0) copies of
an entity handle. These will appear in the same order as in thefirst input set, with
the first copies of the handle surviving. For example,A−B = {abc}.

Regardless of whether the entity members of an entity set areordered or unordered, the
set members are always unordered and unique, with correspondingly simple semantics for
boolean operations.

4.6 Tags

Tags are used to associate application-dependent data witha mesh, entity, or entity set.
Basic tag functionality defined in the iMesh interface is summarized in Table 10, while
functionality for setting, getting, and removing tag data is summarized in Table 11.

When creating a tag, the application must provide its data type and size, as well as
a unique name. For generic tag data, the tag size specifies howmany bytes of data to
store; for other cases, the size tells how many values of thatdata type will be stored. The
implementation is expected to manage the memory needed to store tag data. The name

19



Table 11: Setting, Getting, and Removing Tag Data
Function Description

iMesh_setData The value in tag TH for entity EH is set to the first
tagValSize bytes of the array<char> tagVal

iMesh_setArrData The value in tag TH for entities in EHarray[i] is set
using data in the array<char> tagValArray and the
tag size

iMesh_setEntSetDataThe value in tag TH for entity set SH is set to the
first tagValSize bytes of the array<char> tagVal

iMesh_set[Int,Dbl,EH]DataThe value in tag TH for entity EH is set to the int,
double, or entity handle in tagVal; array and entity
set versions also exist.

iMesh_getData Return the value of tag TH for entity EH
iMesh_getArrData Retrieve the value of tag TH for all entities in EH

array, with data returned as an array of tagVal’s
iMesh_getEntSetDataReturn the value of tag TH for entity EH
iMesh_get[Int,Dbl,EH]DataReturn the value of tag TH for entity EH; array and

entity set versions also exist.

iMesh_rmvTag Remove tag TH from entity EH
iMesh_rmvArrTag Remove tag TH from all entities in EH array
iMesh_rmvEntSetTagRemove tag TH from entity set SH

string and data size can be retrieved based on the tag’s handle, and the tag handle can be
found from its name. Also, all tags associated with a particular entity can be retrieved; this
can be particularly useful in saving or copying a mesh.

Initially, a tag is not associated with any entity or entity set, and no tag values exist;
association is made explicitly by setting data for a tag-entity pair. Tag data can be set
for single entities, arrays of entities (each with its own value), or for entity sets. In each
of these cases, separate functions exist for setting generic tag data and type-specific data.
Analogous data retrieval functions exist for each of these cases.

When an entity or set no longer needs to be associated with a tag — for instance, a
vertex was tagged for smoothing and the smoothing operationfor that vertex is complete
— the tag can be removed from that entity without affecting other entities associated with
the tag. When a tag is no longer needed at all — for instance, when all vertices have been
smoothed — the tag can be destroyed through one of two variantmechanisms. First, an
application can remove this tag from all tagged entities, and then request destruction of the

20



Table 12: Error Handling Functionality
Name Description

iMesh_getDescriptionRetrieves error description

tag. Simpler for the application is forced destruction, in which the tag is destroyed even
though the tag is still associated with mesh entities, and all tag values and associations are
deleted. Some implementations may not support forced destruction.

4.7 Error Handling

Like any API, the iMesh interface is vulnerable to errors, either through incorrect in-
put or through internal failure within an implementation. For instance, it is an error
for an application to request entities with conflicting types and topologies. Also, an er-
ror in the implementation occurs when memory for a new objectcannot be allocated.
The iMesh interface defines a number of standard error conditions which could occur in
iMesh functions, either because of illegal input or internal implementation errors; each of
these error conditions has an accompanying description, which can be retrieved by calling
iMesh_getDescription.

4.8 Fortran Compatibility

For compatibility with the Fortran convention that functions returning values do not mod-
ify their arguments, no iMesh function returns a value. Thatis, all iMesh functions are C
void functions or Fortran subroutines. Also, string arguments in the C API have an accom-
panying argument giving their length; these string length arguments are added at the end
of the argument list in the order the strings appear. Finally, the iMesh API requires the use
of a Fortran compiler that supports the common pass-by-value extension.

5 Usage Examples

This section will replace the current back end of the paper.
Examples I have in mind to discuss in some detail, both as usage examples and to

discuss efficiency issues, etc:

• Tim’s basic example.

• Swapping service. Memory mention.

21



• Mesquite?

• Lori’s FE example

• Zoltan

• Coarse-grained adaptivity?

Then I’d like to be able to say a few words about some of the morecomplex examples that
use iMesh, including things like SLAC / DDriv (Tim) and groundwater (Harold). Once
we’ve got a consensus on which examples and roughly the levelof detail we’re after, I’ll
assign homework.

6 Discussion and Conclusions

Status: services, implementations
Directions

References

[1] S. Balay, K. Buschelman, D. Gropp, W.D. Kaushik, M. Knepley, B.F. McInnes,
L.C. Smith, and H. Zhang. PETSc home page.http://www.mcs.anl.gov/
petsc, 2004.

[2] S. Balay, W.D. Gropp, L.C. McInnes, and B.F. Smith. Efficient management of
parallelism in object-oriented numerical software libraries. In A.M. Bruaset E. Arge
and H.P. Langtangen, editors,Modern Software Tools in Scientific Computing, pages
163–202. Birkhauser Press, 1997.

[3] Kyle Chand, Lori Freitag Diachin, Brian Fix, Carl Ollivier-Gooch, E. Seegyoung
Seol, Mark S. Shephard, and Timothy Tautges. Toward interoperable mesh, geometry
and field components for PDE simulation development.Submitted to Engineering
with Computers, 2005.

[4] Kyle Chand, Brian Fix, Tamara Dahlgren, Lori Freitag Diachin, Xiaolin Li, Carl
Ollivier-Gooch, E. Seegyoung Seol, Mark S. Shephard, Tim Tautges, and Harold
Trease. The TSTTB Interface. https://svn.scorec.rpi.edu/svn/
TSTT/Documentation/TSTTB_userguide.pdf, November 2005.

22



[5] Kyle Chand, Brian Fix, Tamara Dahlgren, Lori Freitag Diachin, Xiaolin Li, Carl
Ollivier-Gooch, E. Seegyoung Seol, Mark S. Shephard, Tim Tautges, and Harold
Trease. The TSTTM Interface. https://svn.scorec.rpi.edu/svn/
TSTT/Documentation/TSTTM_userguide.pdf, November 2005.

[6] Eispack webpage.http://www.netlib.org/eispack/, 2004.

[7] Lapack webpage.http://www.netlib.org/lapack/, 2004.

[8] Linpack webpage.http://www.netlib.org/linpack/, 2004.

[9] Mark S. Shephard. Meshing environment for geometry-based analysis.Int. J. Numer.
Meth. Engng., 47:169–190, 2000.

[10] J. Steinbrenner, T. Michal, and J. Abelanet. An industry specification for mesh gen-
eration software. InProceedings of the 17th AIAA Computational Fluid Dynamics
Conference. American Institute for Aeronautics and Astronautics, 2005.

[11] Unstructured Grid Consortium Standards Document.http://www.aiaa.org/
tc/mvce/ugc/ugcstandv1.pdf, 2002.

[12] The Unstructured Grid Consortium. http://www.aiaa.org/tc/mvce/
ugc/, 2005.

7 iMesh Interface Syntax

Also, each array argument has an accompanying integer telling how many entries in the
array are in use; output arrays also have an integer argumentspecifying their total allocated
size. In addition to the arguments listed, each function also has a mesh instance as its first
argument (analogous to the hiddenthis argument in C++ member functions) and returns
an integer status value in an argument.

8 Specific Function Example

An example of a specific function, as written in the C API, as called from Fortran, as
specified by SIDL, and as called from at least one language using Babel.

23


