New iMesh paper draft

Draft of April 2, 2008

1 Introduction

Creating simulation software for problems described byigladifferential equations is a
relatively common but very time-consuming task. Much oféffert of developing a new
simulation code goes into writing infrastructure for taskgh as interacting with mesh
and geometry data, equation discretization, adaptiveenafemt, design optimization, etc.
Because these infrastructure components are common tamalssimulations, re-usable
software for these tasks would significantly reduce bothithe and expertise required to
create a new simulation code.

Currently, libraries are the most common mechanism fomso# re-use in scientific
computing, especially the highly-successful libraries fiamerical linear algebre?[?,

?, ?, ?]. The drawback to software re-use through libraries is tiffecdlty in changing
from one to another. When a user wishes to add functionaligmmoply experiment with
a different implementation of the same functionality in #re library, all calls within an
application must be changed to the other API. To make matterse, different libraries
rarely package functionality in precisely the same way. tAeosignificant challenge with
library use, especially in the context of meshing and geonigftraries, is that data struc-
tures used within the libraries may be radically differengking changes from one library
to another even more onerous. This time-consuming comresiocess can be a signifi-
cant diversion from the central scientific investigatiampsany application researchers are
reluctant to undertake it. As a result, new advances fronmighing research community
often take years to become incorporated into applicationkitions.

Components represent a higher level of abstraction thearids: essentially, a compo-
nent defines both a standard application programming aderfAPI) for the functionality
provided by a collection of analogous libraries and an albsulata model defining what
sorts of data are passed through the interface. Returnitigetamiliar example of linear

algebra, a numerical linear algebra component would defstaralard interface for oper-
ations like dot products, matrix-vector multiplicatiomdalinear system solution, and its
abstract data model would include objects like vectors aattioes. A key advantage to
the use of components is that any service that uses the campARI can interact with
any implementation of the API, including partial implema&tidns designed to provide
only the functionality required by that service; we willuent to this point in Sections 1.1
and 5.

This paper will describe a meshing component intended tpatpow-level mesh
access and manipulation. In addition, our interface isgessd to support the requirements
of solver applications, including the ability to define mestbsets and to attach arbitrary
user data to mesh entities. Also, our component is intermléé both language and data
structure independent. In summary, our initial target isupport low-level interaction
between applications programs — both meshing and solugiphcations — and external
mesh databases regardless of the data structures andrprogiglanguage used by each.

The most prominent example of prior research in definingriates for meshing is
the Unstructured Grid Consortium, a working group of the Aleshing, Visualization,
and Computing Environments Technical Committee [The first release of the UGC in-
terface] was aimed at high level mesh operations, including meskmgion and quality
assessment. Recognizing a need for lower-level funcilitgnttie UGC has developed a
low-level query and modification interface for mesh datalsasmed exclusively at mesh-
ing operations, as well as an interface for defining genegb-tevel services]; results
of such queries in the UGC interface are explicitly exprdsseinteger indices into data
arrays. The low-level UGC interface is similar in scope to A, although we have
deliberately been more general in providing support focfiomality required by solvers
and in emphasizing data structure neutrality.

1.1 A Simple Use Case for a Meshing Component

Before we begin general discussion of the meshing companetiave developed, let us
first consider a simple example illustrating how a scienttbeputing application could
benefit from using such a component. As an example of a typmahtific computing
application, let us consider a finite element solver (FE&pfor some partial differential
equation, and how this application might continue to dgveleer time.! When first writ-
ten, FESolve is a simple finite volume solver, using lineanmednts. At runtime, FESolve
loads a mesh from a file and does some pre-processing of tHetmesmpute geometric
quantities (such as integration points and weights) anbgper to compute some mesh

Iwhile different applications will surely have differentong@irements for interacting with unstructured
mesh data, many, if not most, applications will follow roligthhis same outline.

topological relationships that weren't in the file. Ther, éach iteration, FESolve iterates
over the elements in the mesh, computing the residual ansdtiffreess matrix for each,
and assembling these into a global linear system. Thismsyistsolved, and the solution
is updated at every node.

After FESolve has been in use for some time, its developargieehat mesh adap-
tation is required to improve solution accuracy. With catrapproaches to writing mesh
infrastructure software, they now face three choiceseeith write their own mesh adap-
tation code; to change the data structures in FESolve sthi#yatan use an existing mesh
adaptation code written by some other researcher; or to RE@®lve communicate with
an external mesh adapter through files. None of these apgmeaideal from the devel-
opers’ point of view, but eventually they pick one and start i

Using a standard mesh component APl makes this transitiarthri@ss painful. The
developers choose mesh adaptation code that uses the comp®l to access mesh
data. They then add to FESolve implementationsrdy the functions in the APactually
requiredfor mesh adaptation. Now their data, in their own internahddructures, can be
used directly by the mesh adaptation code without furthtexgiration.

As a bonus, in implementing part of the mesh component’s &ieIFESolve develop-
ment team has simultaneously done some of the work thateikquired when their users
start clamoring for other advanced capability (designroation, for instance) which
could also be provided using the mesh component API.

1.2 The ITAPS Mesh Component

In this paper, we will describe a newly developed componetaénded to provide sup-
port for the mesh access and manipulation requirementsacfipal, large-scale scientific
computing applications. This component, developed as gfaat larger project by the
Interoperable Tools for Advanced Petascale SimulatioARIS) center to develop inter-
operable software tools for meshes, domain geometry, dati@orepresentation?], is
called iMesh. Note the words “support for”: the iMesh com@onis not intended to be a
general interface to all possible meshing operations,diber, to define the operations re-
quired at a mesh database level so that high-level opesatioimcluding mesh generation,
mesh improvement, mesh adaptation, and design optimizati@an be implemented as
serviceghat use the iMesh component to store and manipulate meshTiabe genuinely
useful to real applications and real application develspie component must be

e general purpose: all mesh operations must be implementasied on the iMesh
component.

o efficient: data access using the iMesh component must no¢ @roo high a cost
in overhead.

¢ flexible: different applications may want to use differeppeoaches for the same
task.

e interoperable: implementations of the component must blg tnterchangeable,
and services designed to use the interface should work oncaanid play basis,
regardless of data structures and programming language.

Section 2 describes the design principles we followed toenthat the iMesh component
met these goals. We first defined a data model (see Sectiore3jiing operations require
information about mesh entities (like vertices, triangdéces, and hexahedral regions),
collections of entities, and meta-data associated withhreasties. Using that data model,
we then defined an API that would support general meshing aasthrelated solver oper-
ations (see Section 4). In addition to defining the iMesh coment, we have also used it
for various meshing and PDE solution tasks; several exawplébe given in Section 5.
The paper will conclude with discussion of lessons learmeohfdeveloping this compo-
nent, of the current status of software using the iMesh ARd, af future prospects for
extension and application of the iMesh component.

2 Design Principles

In Section 1.2, we summarized our goals for the iMesh compibnés design of the
component continued, we found that several principlesrredurequently in guiding our
design decisions as we worked towards those goals. Spdygjfiza found that we made
decisions to produce an interface that was:

Complete. Clearly, a minimal requirement is that all required meshrapens must be
possible, either intrinsically through the iMesh API or hyilding on it. Our guide
to whether the interface is complete has been our colleekiperience — from quite
different perspectives — in meshing and solution algorghkive feel that if we can
satisfy our collective needs, and those that we know are énbysothers, that the
interface is complete enough for at least an initial release

Run-time efficiency. For the iMesh component to be useful for applications it nhaste
low overhead. Specifically, the interface must be desigmethat an iMesh im-
plementation can provide data access and manipulatiotyresarapidly as native
access to the same mesh database. An example of the aplioathis principle

4

in the iMesh interface are the availability of both singlg#y and array-of-entities
access to mesh data, each of which is more efficient under sotm®t all circum-
stances.

Ease of use.We also wish to design an interface which is a relatively dasyprogram-
mers to use. This implies an interface that is relatively paot on the one hand but
also provides direct access to relatively commonly usedtcoats, even at the ex-
pense of additional functions in the interface. For exampéerecognize that certain
types of metadata — specifically, double, integer, andyeh#nhdle metadata — will
be very common and more easily handled both by iMesh impléstiens and appli-
cations if there are specific functions for these types. Hewen addition to these
particular functions, we also provide in such cases a geaecass mechanism; in
this case, generic metadata is described using byte strings

Flexibility. We recognize that different applications may choose toesgthe same se-
mantic content in different ways. Where feasible, the iMiesérface supports this.
For example, one application may choose to represent boucdadition data by
metadata attached to particular mesh entities; anotherepagsent the same infor-
mation by collecting entities with the same boundary coadiinto a set. As another
example, some applications may choose to access datal@netytity while others
may prefer array access to data.

Extensibility. We have designed the interface to allow extensions to thedgel mesh
access functionality that interface defines. For examplecant addition to the
iMesh interface is support for nonlinear shape of meshiestitThe support was
added to the iMesh interface without requiring changes metions already in the
interface. As a second example, ongoing work for it parabkeénsion to the iMesh
interface leverages serial iMesh functionality for paghlisage where appropriate.

Simplified applications programming. One obvious way to simplify applications pro-
gramming is by making the iMesh interface as lightweight assible. In addition,
wherever possible, the iMesh interface is designed to méfieult tasks under the
control of the implementation rather than the applicatidmprime example of this
is in the area of memory management. An application, whenesting an array of
data, need not know in advance the size of the array. Indfeadpplication can pass
in an uninitialized array and implementation automaticallocates the appropriate
amount of memory for that array.

Interoperability. In the long-term, success of the iMesh component will depentow
well the component truly supports interoperability. Tissthe key to being able

5

to leverage the effort in development of both implementetiand services as well
as conversion of applications to use the interface. Inenadglity, in turn, requires
not only the use of a standard interface, but also data steieind programming
language neutrality.

3 Data Model

In the iMesh data model, all mesh primitives — vertices (Gfa)ges (1D), faces (2D), and
regions (3D) — are referred to &ntities Mesh entities are collected together to form
entity setsAll topological and geometric mesh d&ia stored in aoot entity setaind there

is a single root set for each computational domain; all otiméity sets are contained in the
root set. Many implementations will represent the root sed database containing all of
the mesh entities, with other entity sets containing hanftiethese entities. Any iMesh
data object — an entity or any entity set including the rodt-secan have one or more
tagsassociated with it, so that arbitrary data can be attachédet@bject. To preserve
data structure neutrality, all iMesh data objects are ifledtby opaque handles.

3.1 Mesh Entities

All the primitive components of a mesh are defined by the iMgsta model tentities
iMesh entities are distinguished by their entity type (etifesly, their topological dimen-
sion) and entity topology; each topology has a unique etyjtg associated with it. Ex-
amples of entities include a vertex, an edge, triangulauadglateral faces in 2D or 3D,
and tetrahedral or hexahedral regions in 3D; a completéocptd entities supported by
iMesh is shown in Figure 1. Faces and regions have no intedi@s. Higher-dimensional
entities are defined by lower-dimensional entities usingreaical ordering.

3.2 Entity Adjacencies

Adjacencies describe how mesh entities connect to each &tihvean entity of dimension
d, first-order adjacency returns all of the mesh entities ofadisiong which are on the
closure of the entity for downward adjacena/* q), or for which the entity is part of
the closure for upward adjacenay € g), as shown in Figure 2(a) and (b). For a particu-
lar implementation, not all first-order adjacencies areessarily available. For instance,
in a classic finite element element-node connectivity gf@raequests for faces or edges

2Geometric mesh data geometric data required to define shapes of mesh enfitigs s distinct from
geometric model datavhich defines the shapes of the problem domain.

Vertex Face Region

oo

B
&

Triangle Tetrahedron Pyramid
Point i
Edge D 4’
Quadrilateral Prism Septahedron

Line Segment Polygon Hexahedron Polyhedron

Figure 1: Entities supported by the iMesh component, inalyithe ordering of the lower-
dimensional entities on their closure.

adjacent to an entity may return nothing, because the imgikéation has no stored data
to return. For first-order adjacencies that are availablénimplementation, the imple-
mentation may store the adjacency information directlgampute adjacencies by either
a local traversal of the entity’s neighborhood or by globavérsal of the entity set. Each
iMesh implementation must provide information about thailability of and relative cost
of first-order adjacency queries.

For an entity of dimensiod, second-order adjacencies describe all of the mesh entitie
of dimensionq that share any adjacent entities of dimendipmvhered # b andb # q.
Second-order adjacencies can be derived from first-ordaceawlcies. Note that, in the
iMesh data model, requests such as all vertices that arélaig to a given vertex are
requests for second-order adjacencies.

Examples of adjacency requests include: for a given faesighions on either side of
the face (first-order upward); the vertices bounding the fdicst-order downward); and
the faces that share any vertex with the face (second-order)

(a) Downward adjacency; edges (b) Upward adjacency: edges (c) Second adjacency;red edges
adjacent to a face, vertices adja- adjacent to a vertex, faces adja- are adjacent to vertices adjacent
centto an edge. centto an edge. to the red face.

Figure 2: Examples of adjacency relationships between reestes.

3.3 Entity Sets

The iMesh data model includes the notion of arbitrary grogpiof entities; these group-
ings are callecentity sets Each entity set may be a true set (in the set theoretic sense)
or it may be a (possibly non-unique) ordered list of entjtinghe latter case, entities are
retrieved in the order in which they were added to the enBty &n entity set also may
or may not be a simple mesh; entity sets that simple meshes have obvious applica-
tion in multiblock and multigrid contexts, for instance. tEy sets (other than the root
set) are populated by addition or removal of entities fromdét. In addition, set boolean
operations — subtraction, intersection, and union — are sugpported.

Two primary relationships among entity sets are suppofedt, entity sets may con-
tain one or more entity sets (by definition, all entity setlobg to the root set). An entity
set contained in another may be either a subset or an eleeestt (n the set theoretic
sense) of that entity set. The choice between these twnetations is left to the ap-
plication; the iMesh interface does not impose either priation. Set contents can be
queried recursively or non-recursively; in the former ¢akentity set A is contained in
entity set B, a request for the contents of B will include thétees in A (and the entities
in sets contained in A). Second, parent/child relationslptween entity sets are used
to represent logical relationships between sets, inctudinltigrid and adaptive mesh se-
quences. These logical relationships naturally form actied acyclic graph.

Examples of entity sets include the ordered list of vertlo@snding a geometric face,
the set of all mesh faces classified on that geometric faeesehof regions assigned to
a single processor by mesh partitioning, and the set of allienin a given level of a
multigrid mesh sequence.

3.4 Tags

Tags are used as containers for user-defined data that catableea to iMesh entities,
meshes, and entity sets. Different values of a particu¢pcas be associated with different
mesh entities; for instance, a boundary condition tag walehdifferent values for an
inflow boundary than for a no-slip wall. In the general cas¢esh tags do not have a
predefined type and allow the user to attach arbitrary datadsh entities; this data is
stored and retrieved by implementations as a bit patternimpoove performance and
ease of use, we support three specialized tag types: istedmrbles, and handles. These
typed tags enable correct saving and restoring of tag dag¢a\amesh is written to a file.

3.5 Meshes

To be useful to applications, information in the root set ne @r more of its constituent
entity sets is assumed to be a valid computational mesh, @rarof which include:

¢ A non-overlapping, connected set of iMesh entities; fomegke, the structured and
unstructured meshes commonly used in finite element sirnokagimple mesh

e Overlapping grids in which a collection of simple meshesu&d to represent some
portion of the computational domain, including chimera/tibiock, and multigrid
meshesraultiple mesh The interfaces presented here handle these mesh types in
a general way; higher-level convenience functions may liee@dater to support
specific functionalities needed by these meshes. In this, aech of the simple
meshes is a valid computational mesh, stored as an entity set

e Adaptive meshes in which all entities in a sequence of ref(sgdple or multiple)
meshes are retained in the root set. The most highly refiregotation level typically
comprises a simple or multiple mesh. Typically, differeatdls of mesh adaptation
will be represented by different entity sets, with many & émtities shared by mul-
tiple entity sets.

e Smooth particle hydrodynamic (SPH) meshes, which conkgstollection of iMesh
vertices with no connectivity or adjacency information.

At the most fundamental level, we consider a static simplehmerhis mesh provides
only basic query capabilities to return entities and thdjaeencies. This implies that all
implementations have a root set, but not necessarily theestithg capabilities described
in Section 3.3.3.

In addition, meshes can also be extended to be modifiabtajghrsupport for creation
and deletion of mesh entities (see Sectt®¥.3). Modifiable meshes require a minimal
interaction with the underlying geometric model to unigqua$sociate mesh entities with
geometric model entities of equal or greater dimeng&lpn[

4 Interface Functionality

The iMesh interface supports a variety of commonly neededtfanalities for mesh and
entity query, mesh modification, entity set operations, tags. All data passed through
the interface is in the form of opaque handles to objects ééfin the data model. In this
section we describe the functionality available throughiMesh interfacé. For listings
of allowable values of all ITAPS enumerated data types araharete example of the full
call sequence for functions with arrays and strings, seeeAgx??.

4.1 Global Queries

Global query functions can be categorized into two groupsdatabase functionghat
manipulate the properties of the database as a whole as®t guery functionghat query
the contents of entity sets as a whole; these functionsmeguientity set argument, which
may be the root set as a special case. These functions aressirmdnn Table 1.

Database functions include functions to create and destesh instances; note that
the create function only sets up data structures for the nmssaince, without supplying
any mesh data. The load and save functions read and write imfesimation from files;
file format and read/write options are implementation deleeh As mesh data is loaded,
entities are stored in the root set, and can optionally beegglanto a subsidiary entity
set as well. iMesh implementations must be able to providedinate information in
both blocked (xxx...yyy...zzz...) and interleaved (xyzxyz...) formats; an application
can query the implementation to determine the implemeniatipreferred storage order.
Also, implementations must provide information about thx@lability and relative cost of
computing adjacencies between entities of different typérally, each instance of the
interface must provide a handle for the root set.

Set query functions allow an application to retrieve infation about entities in a
set. The entity set may be the root set, which will return el contents of the entire
database, or may be any subsidiary entity set. For examypletibns exist to request the
number of mesh entities of a given type or topology; the tygrestopologies are defined as

3Note that these descriptions do not include detailed syntétich can be found in the interface user
guidef?, ?].

10

Table 1: Functions for Global Queries

Function | Description

iMesh_newMesh Creates a new, empty mesh instance

iMesh_dtor Destroys a mesh instance

iMesh_load Loads mesh data from file into entity set

iMesh_save Saves data from entity set to file

iMesh_getRootSet | Returns handle for the root set

iMesh_getGeometricBReturns geometric dimension of mesh

iMesh_getDfltStorageTells whether implementation prefers blocked |or
interleaved coordinate data

iMesh_getAdjTable | Returns table indicating availability and cost of gn-
tity adjacency data

iMesh_areEHValid | Returns true if EH remain unchanged since last
user-requested status reset

iMesh_getNumOfTyp&eturns number of entities of type in ES

iMesh_getNumOfTopReturns number of entities of topo in ES

iMesh_getAllVixCoaréeturns coords of all vertices in the set and all vier-
tices on the closure of higher-dimensional entitjes
in the set; storage order can be user-specified

iMesh_getEntities | Returns all entities in ES of the given type ahd
topology

iMesh_getAdijEntities For all entities of given type and topology in ES,
return adjacent entities of adj_type

iMesh_getAllVixCoaré®r all vertices, return coords; storage order can be
user-specified.

iMesh_getVixArrCooridsr all input vertex handles, return coords; storage
order can be user-specified.

iMesh_getVixCoordIreexall entities of given type and topology, find ad-
jacent entities of adj_Type, and return the copr-
dinate indices for their vertices. Vertex ordering
matches that in getAllVtxCoords.

11

Table 2: Functions for Single Entity Queries
Function | Description |

iMesh_initEntlter Create an iterator to traverse entities of type and
topo in ES; return true if any entities exist
iMesh_getNextEntltelReturn true and a handle to next entity if there
one; false otherwise

iMesh_resetEntlter | Reset iterator to restart traverse from the first entity
iMesh_endEntlter | Destroy iterator

is

iMesh_getType Return type of entity

iMesh_getTopo Return topology of entity
iMesh_getVixCoord| Return coordinates of a vertex
iMesh_getEntAdj Return entities of given type adjacent to EH
iMesh_getEntArrAdj Return entities of given type adjacent to entities| of
a second type adjacent to EH

enumerations. Applications can request handles for aliesnbf a given type or topology

or handles for entities of a given type adjacent to all esgitvf a given type or topology.

Also, vertex coordinates are available in either blockethterleaved order. Coordinate
requests can be made for all vertices or for the vertex harrékeirned by an adjacency
call. Finally, indices into the global vertex coordinateagrcan be obtained for both entity
and adjacent entity requests.

4.2 Entity- and Array-Based Query

The global queries described in the previous section artosetrieve information about
all entities in an entity set. While this is certainly a preat alternative for some types
of problems and for small problem size, larger problems twrasions involving mesh
modification require access to single entities or to blodlentities. The iMesh interface
supports traversal and query functions for single entiied for blocks of entities; the
guery functions supported are entity type and topologytexecoordinates, and entity
adjacencies. Tables 2 and 3 summarize these functions.

4.3 Mesh Modification

The iMesh interface supports mesh modification by providinginimal set of operators
for low-level modification; both single entity (see Tableaid block versions (see Table 5)

12

Table 3: Functions for Block Entity Queries
Function | Description |

iMesh_initEntArriter| Create a block iterator to traverse entities of type
and topo in ES
iMesh_getNextEntArrReturn true and a block of handles if there are any;
false otherwise
iMesh_resetEntArriteReset block iterator to restart traverse from the first
entity

iMesh_endEntArriter Destroy block iterator

iMesh_getEntArrTypeReturn type of each entity
iMesh_getEntArrTopdReturn topology of each entity
iMesh_getEntArrAd] Return entities of type adjacent to each EH
iMesh_getEntArr2ndAREgturn entities of given type adjacent to entities of
a second type adjacent to each EH

Table 4: Functions for Single Entity Mesh Modification
Function | Description |

iMesh_createVtx Create vertex at given location
iMesh_setVitxCoords Changes coordinates of existing vertex
iMesh_createEnt Create entity of given topology from lower
dimensional entities; return entity handle and cre-
ation status
iMesh_deleteEnt Delete EH from the mesh

of these operators are provided. High-level functionaiitgluding mesh generation, qual-
ity assessment, and validity checking, can in principle bt from these operators, al-
though in practice such functionality is more likely to beyided using intermediate-level
services that perform complete unit operations, includiagex insertion and deletion
with topology updates, edge and face swapping, and smapthin

Geometry modification is achieved through functions thange vertex locations.
Vertex locations are set at creation, and can be changedjaise®, for instance, by mesh
smoothing or other node movement algorithms.

Topology modification is achieved through the creation aglétibn of mesh entities.
Creation of higher-dimensional entities requires spedifor, in canonical order, of an
appropriate collection of lower-dimensional entities.r Kwstance, a tetrahedron can be
created using four vertices, six edges or four faces, bufroot combinations of these.

13

Table 5: Functions for Block Mesh Modification
Function | Description

iMesh_createVixArr| Create vertices at given location
iMesh_setVixArrCoor@sanges coordinates of existing vertices
iMesh_createEntArr Create entities of given topology from lowe
dimensional entities; return entity handle and stgtus
iMesh_deleteEntArr| Delete each EH from the mesh

=
1

Upon creation, adjacency information properly connectimg new entity to its compo-
nents is set up by the implementation. Some implementatiasallow the creation of
duplicate entities (for example, two edges connecting dineestwo vertices), while others
will respond to such a creation request by returning a copfi@tlready-existing entity.

Deletion of existing entities must always be done from hgjhe lowest dimension,
because the iMesh interface forbids the deletion of anyewniith existing upward adja-
cencies (for instance, an edge that is still in use by one agerfazes or regions).

4.4 Entity Shape

Information about the shape of mesh entities is essentialjpport of high order accurate
solution. Complicating matters, representation of cunvesgh entities can be formulated
in more than one way, including interpolation, approximatianalytic forms, and CAD
data. In each of these formulations, however, point-wissrgaric information is used to
build up the required higher-order shapes of mesh entikes.example, Figure 3 shows
the Lagrange interpolating and Bezier approximating shdpemesh entities with con-
stant or variable orders with a set of nodes used to repréiserttigher-order shape for
mesh edges and faces. iMesh support for curved mesh efitieses on specifying which
form of geometric approximation is in use — so that an appbcacapable of handling
multiple types can distinguish between them — and the lonatof the control points.
Mesh shape functionality is designed to make common usagetably equal-order La-
grange finite elements — easy, while still allowing less campmmore complicated usage
— such ag-refinement, or spectral elements, for instance. As suobagfunctions exist
for initializing mesh entity shapes across the entire mestyding not only creation of
high-order nodes but initialization of their locations. @&tnore fine-grained level, nodes
can be created as ordinary vertices and associated witlehdimensional entities either
entity-by-entity or node-by-node. For equal order enditiereation of and access to high
order nodes for a mesh entity and its closure (for examptehtointerior of a hexahedron
and its bounding faces and edges) can be handled in a sirgl&lceed-order elements

14

Mixed—-order
Lagrange

Lagrange

Mixed—-order
Bezier

Figure 3: Examples of high-order, curved mesh entities

require a lower-level approach from the application, buewgect that writers op-refined
finite-element solvers will have the expertise for this. éflyy adjacency information for
high-order nodes — such as the identities of all hexahedrident on a mid-edge node —
is accessed by first finding the mesh entity that a node is @$sdavith, and then finding
adjacencies for that entity.

4.5 Entity Sets

Entity set functionality in the iMesh interface is dividewta three parts: basic set func-
tionality, hierarchical set relations, and set boolearrafiens.

Basic set functionality, summarized in Table 7, includesating and destroying entity
sets; adding and removing entities and sets; and seveityl settspecific query functions.
4 Entity sets can be either ordered and non-unique, or uneddend unique; an ordered
set guarantees that query results (including traversdilpimiays be given in the order in
which entities were added to the set. The ordered/unordgatals of an entity set must be

“Note that the global mesh query functions (Sectk®¥.1) and traversal functions (Secti6f.4.2)
defined above can be used with the root set or any other eatigssheir first argument.

15

Table 6: Functions for High-Order Entity Shape

Function

Description

iMesh_hasMeshSha

ydestermine with the mesh contains high ord
shapes of given shape type

iMesh_createMeshS§

bHapde higher order shapes with the specified sh
type and order for the mesh

iMesh_hasEntShaps

b Determine with an entity has high order shapeg
given shape type

iMesh_getEntShape

GBeethe order of the higher order mesh entity sh

iMesh_createEntSh

aligreate high order shapes for a single entity

iMesh_deleteEntSh;

afidslete high order nodes for an entity

iMesh_getEntShape

sReturn high order nodes for an entity

iMesh_setVixParam

Set parametric coordinates of high order node

iMesh_getVixParam

Get parametric coordinates of high order node

iMesh_setNodeToE

ntAssociate a high order node with a mesh entity

iMesh_getEntOfNod

eReturn the mesh entity on which a high order ng
lies

er

ape

of

ape

de

iMesh_hasEntArrSh

apetermine whether an array of entities have h
order shapes of given shape type

gh

iMesh_getEntArrSh

0@ rither order of the high order mesh entity shg
for multiple entities

ape

iMesh_createEntArr,

S@apate high order shapes for multiple entities

iMesh_deleteEntArr

Sbaete high order nodes for entities

iMesh_getEntArrSh

affesturn high order nodes for entities

iMesh_setVixArrPar

aBet parametric coordinates of high order nodes

iMesh_getVixArrPal

a@®et parametric coordinates of high order nodes

iMesh_setNodeArrT)

oBssociate high order nodes with mesh entities

iMesh_getEntArrOf}

Ndieturn the mesh entities on which high order no
lie

Hes

16

Table 7: Functions for Basic Entity Set Functionality

Function

| Description |

iMesh_createEntSe

Creates a new entity set (ordered and non-unigu
isList is true)

iMesh_destroyEntSetDestroys existing entity set

iMesh_isList

Return true if the set is ordered and non-unique

iMesh_getNumEntS

eBeturns number of entity sets contained in SH

iMesh_getEntSets

Returns entity sets contained in SH

iMesh_addEntSet

Adds entity set SH1 as a member of SH2

iMesh_rmvEntSet

Removes entity set SH1 as a member of SH2

iMesh_isEntSetCon

taetdrns true if SH2 is a member of SH1

iMesh_addEntToSe

Add entity EH to set SH

iMesh_rmvEntFrom

SBemove entity EH from set SH

iMesh_addEntArrTo

SAdd array of entities to set SH

iMesh_rmvEntArrFr

piRBBiove array of entities from set SH

iMesh_isEntContain

eBReturns true if EH is a member of SH

e if

specified when the set is created and can be queried.

Entity sets are created empty. Entities can be added to avweafrom the set indi-
vidually or in blocks; for ordered sets, the last of a numideduplicate entries will be the
first to be deleted. Also, entity sets can be added to or rethiveen each other; note that,
because all sets are automatically contained in the rodtaatcreation, calls that would
add or remove a set from the root set are not permitted. Atyesgt can also be queried
to determine the number and handles of sets that it contamsto determine whether a
given entity or set belongs to that set.

Hierarchical relationships between entity sets are irddrtd describe, for example,
multilevel meshes and mesh refinement hierarchies. Thetidinal relationships implied
here are labeled as parent-child relationships in the iMetgitface. Functions are pro-
vided to add, remove, count, and identify parents and aml@nd to determine if one set
is a child of another; see Table 8.

Set boolean operations — intersection, union, and subiraet are also defined by
the iMesh interface; these functions are summarized ineT@blThe definitions are in-
tended to be compatible with their C++ standard templatafyp(STL) counterparts, both
for semantic clarity and so that STL algorithms can be usedipjementations where ap-
propriate. All set boolean operations apply not onlgtity members of the set, but also
to setmembers. Note that set hierarchical relationships arenubtided: the set result-

17

Table 8: Functions for Entity Set Relationships
Function | Description |
iMesh_addPrntChld| Create a parent (SH1) to child (SH2) relationship
iMesh_rmvPrntChld] Remove a parent (SH1) to child (SH2) relationshi
iMesh_isChildOf Return true if SH2 is a child of SH1
iMesh_getNumChld| Return number of children of SH
iMesh_getChldn Return children of SH
iMesh_getNumPrnt| Return number of parents of SH
iMesh_getPrnts Return parents of SH

p

Table 9: Functions for Entity Set Boolean Operations

Function | Description |
iMesh_subtract Return set difference SH1-SH2 in SH
iMesh_intersect Return set intersection of SH1 and SH2 in SH
iMesh_unite Return set union of SH1 and SH2 in SH

ing from a set boolean operation on sets with hierarchidatiomships willnot have any
hierarchical relationships defined for it, regardless efitiput data. For instance, if one
were to take the intersection of two directionally-coaestmeshes (stored as sets) with
the same parent mesh (also a set) in a multigrid hierarchyg tls no reason to expect that
the resulting set will necessarily be placed in the muldidrierarchy at all. On the other
hand, if both of those directionally-coarsened meshesatoatset of boundary faces, then
their intersection will contain that set as well.

While set boolean operations are completely unambiguausrfordered entity sets,
ordered sets make things more complicated. For operationdich one set is ordered
and one unordered, the result set is unordered; its cordemthe same as if an unordered
set were created with the (unique) contents of the ordereahskthe operation were then
performed. In the case of two ordered sets, the iMesh spatbifictries to follow the spirit
of the STL definition, with complications related to the pbdgy of multiple copies of a
given entity handle in each set. We recognize that these awkesomewhat arbitrary, but
have been unable to find a more systematic way of defining thy@s&tions for ordered
sets. In the following discussion, assume that a givenyehéihdle appeamntimes in the
first set anch times in the second set.

e For intersection of two ordered sets, the output set wiltaimnthe minim, n) copies
of the entity handle. These will appear in the same order disarfirst input set,
with the first copies of the handle surviving. For examplégiigection of the two

18

Table 10: Basic Tag Functions

Name | Description

iMesh_createTag Creates a new tag of the given type and number of
values

iMesh_destroyTag | Destroys the tag if no entity is using it or if force |s
true

iMesh_getTagName Returns tag ID string
iMesh_getTagSizeValReturns tag size in number of values
iMesh_getTagSizeBy®sturns tag size in number of bytes
iMesh_getTagHandleReturn tag with given ID string, if it exists
iMesh_getTagType | Return data type of this tag

iMesh_getAllTags | Return handles of all tags associated with entity EH
iMesh_getAllEntSetTé&sturn handles of all tags associated with entity|set
SH

setsA = {abacdbcdand B = {dadbag will result in AN\ B = {abacd}.

e Union of two ordered sets is easy: the output set is a conatierof the input sets:
AUB = {abacdbcadadbac

e Subtraction of two ordered sets results in a set containiimym-— n, 0) copies of
an entity handle. These will appear in the same order as ifirgtenput set, with
the first copies of the handle surviving. For example; B = {abc}.

Regardless of whether the entity members of an entity sebraiered or unordered, the
set members are always unordered and unique, with corrdsmiyn simple semantics for
boolean operations.

4.6 Tags

Tags are used to associate application-dependent datawitish, entity, or entity set.
Basic tag functionality defined in the iMesh interface is suemized in Table 10, while
functionality for setting, getting, and removing tag dasummarized in Table 11.
When creating a tag, the application must provide its dgte B§nd size, as well as
a unique name. For generic tag data, the tag size specifiesrtamy bytes of data to
store; for other cases, the size tells how many values oftttiat type will be stored. The
implementation is expected to manage the memory neededr® tsig data. The name

19

Table 11: Setting, Getting, and Removing Tag Data
Function | Description |

iMesh_setData The value in tag TH for entity EH is set to the first
tagValSize bytes of the array<char> tagVal
iMesh_setArrData | The value in tag TH for entities in EHarray][i] is set
using data in the array<char> tagValArray and the
tag size
iMesh_setEntSetDatarhe value in tag TH for entity set SH is set to the
first tagValSize bytes of the array<char> tagVal
iMesh_set[Int,Dbl,EH]Detasalue in tag TH for entity EH is set to the int,
double, or entity handle in tagVal; array and entity
set versions also exist.

iMesh_getData Return the value of tag TH for entity EH
iMesh_getArrData | Retrieve the value of tag TH for all entities in EH
array, with data returned as an array of tagVal's
iMesh_getEntSetDatdreturn the value of tag TH for entity EH

iMesh_get[Int,Dbl,EHRtan the value of tag TH for entity EH; array and
entity set versions also exist.

iMesh_rmvTag Remove tag TH from entity EH
iMesh_rmvArrTag | Remove tag TH from all entities in EH array
iMesh_rmvEntSetTagRemove tag TH from entity set SH

string and data size can be retrieved based on the tag'sdyardl the tag handle can be
found from its name. Also, all tags associated with a paldioentity can be retrieved; this
can be particularly useful in saving or copying a mesh.

Initially, a tag is not associated with any entity or entigt,sand no tag values exist;
association is made explicitly by setting data for a tagegmtair. Tag data can be set
for single entities, arrays of entities (each with its owiued, or for entity sets. In each
of these cases, separate functions exist for setting getagyidata and type-specific data.
Analogous data retrieval functions exist for each of theses.

When an entity or set no longer needs to be associated witly a-téor instance, a
vertex was tagged for smoothing and the smoothing operétiatiat vertex is complete
— the tag can be removed from that entity without affectirfieotentities associated with
the tag. When a tag is no longer needed at all — for instancenwah vertices have been
smoothed — the tag can be destroyed through one of two variaohanisms. First, an
application can remove this tag from all tagged entitied,then request destruction of the

20

Table 12: Error Handling Functionality
| Name | Description |

| iMesh_getDescriptigrRetrieves error description |

tag. Simpler for the application is forced destruction, imieh the tag is destroyed even
though the tag is still associated with mesh entities, alnd@lalues and associations are
deleted. Some implementations may not support forceduzin.

4.7 Error Handling

Like any API, the iMesh interface is vulnerable to errorghei through incorrect in-

put or through internal failure within an implementation.orfnstance, it is an error
for an application to request entities with conflicting tgpend topologies. Also, an er-
ror in the implementation occurs when memory for a new obgacinot be allocated.
The iMesh interface defines a number of standard error donditvhich could occur in

iMesh functions, either because of illegal input or intéimglementation errors; each of
these error conditions has an accompanying descriptioichvdan be retrieved by calling
iMesh_getDescription.

4.8 Fortran Compatibility

For compatibility with the Fortran convention that funetgreturning values do not mod-
ify their arguments, no iMesh function returns a value. Tibaall iMesh functions are C
void functions or Fortran subroutines. Also, string argatsén the C API have an accom-
panying argument giving their length; these string lengguments are added at the end
of the argument list in the order the strings appear. FinddlyiMesh API requires the use
of a Fortran compiler that supports the common pass-byevattension.

5 Usage Examples
This section will replace the current back end of the paper.

Examples | have in mind to discuss in some detail, both aseusagmples and to
discuss efficiency issues, etc:

e Tim’s basic example.

e Swapping service. Memory mention.

21

e Mesquite?

e Lori's FE example

e Zoltan

e Coarse-grained adaptivity?

Then I'd like to be able to say a few words about some of the rooneplex examples that
use iMesh, including things like SLAC / DDriv (Tim) and gradwater (Harold). Once
we've got a consensus on which examples and roughly the dé\idtail we're after, I'll
assign homework.

6

Discussion and Conclusions

Status: services, implementations
Directions

References

[1]

[2]

[3]

[4]

S. Balay, K. Buschelman, D. Gropp, W.D. Kaushik, M. Knepl B.F. Mcinnes,
L.C. Smith, and H. Zhang. PETSc home padme.t p: / / www. nts. anl . gov/
pet sc, 2004.

S. Balay, W.D. Gropp, L.C. Mclnnes, and B.F. Smith. E#ici management of
parallelism in object-oriented numerical software lilear In A.M. Bruaset E. Arge
and H.P. Langtangen, editoldpdern Software Tools in Scientific Computipgges

163-202. Birkhauser Press, 1997.

Kyle Chand, Lori Freitag Diachin, Brian Fix, Carl Ollier-Gooch, E. Seegyoung
Seol, Mark S. Shephard, and Timothy Tautges. Toward inexadge mesh, geometry
and field components for PDE simulation developme®tibmitted to Engineering
with Computers2005.

Kyle Chand, Brian Fix, Tamara Dahlgren, Lori Freitag Ehén, Xiaolin Li, Carl
Ollivier-Gooch, E. Seegyoung Seol, Mark S. Shephard, Timtges, and Harold
Trease. The TSTTB Interface. htt ps://svn. scorec.rpi.edu/svn/
TSTT/ Docunent at i on/ TSTTB_user gui de. pdf , November 2005.

22

[5] Kyle Chand, Brian Fix, Tamara Dahlgren, Lori Freitag Eian, Xiaolin Li, Carl
Ollivier-Gooch, E. Seegyoung Seol, Mark S. Shephard, Timtges, and Harold
Trease. The TSTTM Interface. htt ps://svn. scorec.rpi.edu/svn/
TSTT/ Docunent at i on/ TSTTM user gui de. pdf , November 2005.

[6] Eispack webpagehttp://ww. netli b. org/ei spack/,2004.
[7] Lapack webpagehtt p: // www. net | i b. or g/ | apack/ , 2004.
[8] Linpack webpagehttp://ww. netlib.org/linpack/,2004.

[9] Mark S. Shephard. Meshing environment for geometryedamalysisint. J. Numer.
Meth. Engng.47:169-190, 2000.

[10] J. Steinbrenner, T. Michal, and J. Abelanet. An induspecification for mesh gen-
eration software. IfProceedings of the 17th AIAA Computational Fluid Dynamics
ConferenceAmerican Institute for Aeronautics and Astronautics,200

[11] Unstructured Grid Consortium Standards Documéntt p: / / ww. ai aa. or g/
t ¢/ mvcel/ ugc/ ugcst andvl. pdf, 2002.

[12] The Unstructured Grid Consortium. http://wwv. ai aa. org/tc/ mvce/
ugc/ , 2005.

7 iMesh Interface Syntax

Also, each array argument has an accompanying integargdibw many entries in the
array are in use; output arrays also have an integer argwspeaifying their total allocated
size. In addition to the arguments listed, each functioa his a mesh instance as its first
argument (analogous to the hiddemi s argumentin C++ member functions) and returns
an integer status value in an argument.

8 Specific Function Example

An example of a specific function, as written in the C API, adechfrom Fortran, as
specified by SIDL, and as called from at least one language iBabel.

23

