
ITAPS Parallel Interface v0.1

March 2008

2

Parallel Interface Subcommittee

• Sandia
– Karen Devine, Vitus Leung

• LLNL
– Lori Diachin, Mark Miller

• Argonne
– Tim Tautges, Jason Kraftcheck

• Rensselaer
– Mark Shephard, Onkar Sahni, Ken Jansen

• U. British Columbia
– Carl Ollivier-Gooch

3

Parallel Interface Goals

• Primarily support distributed memory.
– Accept MPI communicators from application.
– But allow use of global address space and shared

memory paradigms.
• Maintain backward compatibility of serial

iMesh.
– Serial iMesh works as expected within a process.
– Serial iMesh works as expected for NWGrid.

4

Terminology

• Process: a program executing; MPI process.
– Number of processes == MPI_Comm_size
– Process number == MPI_Comm_rank

• Mesh instance: mesh database provided by an
implementation.
– Each process has one or more mesh instances.

• Partition: describes a parallel mesh.
– Maps entities to subsets called parts.
– Maps parts to processes.
– Has a communicator associated with it.

• Global operation: an operation with respect to data in all
parts in a partition’s communicator.

• Local operation: an operation with respect to either a part’s
or process’ data.

5

Partition Characteristics

• Maps entities to parts.
– Part assignments computed with respect to a set of

entities.
– Computed assignments induces part assignments for

adjacent entities.
• Maps parts to processes.

– Each process may have one or more parts.
– Each part is wholly contained within a process.

• Has a communicator associated with it.
– “Global” operations performed with respect to this

communicator.
• Accessed via iMeshP_PartitionHandle.

6

Partition Creation/Destruction

• Creation/Destruction
– iMeshP_createPartitionAll

• Takes MPI Communicator or NULL.
– iMeshP_destroyPartitionAll
– iMeshP_syncPartitionAll

• After parts are added/updated, computes and stores
global information.

– Mapping of parts to processes.
– Number of parts in partition.

• Partition Queries
– iMeshP_getPartitions

• Return all partition handles in this mesh instance.
– iMeshP_getPartitionComm

• Returns the MPI Communicator or NULL.

7

Partition Queries

• Mapping of parts to processes
– iMeshP_getNumParts

• Returns total number of parts in partition.
– iMeshP_getPartsOnRank

• Returns part handles for parts on a given process.
– iMeshP_getRankOfPart

• Returns process number for a given part.
– No communication; all values precomputed in

iMeshP_syncPartitionAll.
• Global mesh information

– iMeshP_getNumOfTypeAll
• Returns total number of entities with given type in a given partition and

entity set.
– iMeshP_getNumOfTopoAll

• Returns total number of entities with given topology in a given
partition and entity set.

– Require collective communication.

8

Part characteristics

• Think in terms of parts, not processes.
– Number of parts may be less than, equal to, or greater

than number of processes.
• Part contains entities it owns + copies of entities

needed for computation within the part.
• Wholly stored in a single process.
• Accessed via iMeshP_PartHandle.

– Local part handles identify on-process parts.
– Remote part handles identify off-process parts.

9

iMeshP_PartHandle

• iMeshP_PartHandle may be substituted for
iBase_EntitySetHandle in many iMesh functions to
perform local part operations.
– Get number of local entities in a part with

iMesh_getNumOfType, iMesh_getNumOfTopo.
– Get entities in a part with iMesh_getEntities.
– Add entity to a local part with iMesh_addEntToSet.
– Et cetera, et cetera, et cetera.

10

Part Creation/Destruction

• Create/Destroy a part.
– iMeshP_createPart

• Creates a part and adds it to a partition.
– iMeshP_destroyPart

• Removes a part and invalidates the part handle.
– After all parts are created and populated,

application must call iMeshP_syncPartitionAll to
precompute partition data.

11

More Terminology

• Ownership: having the right to modify.
• Part-Boundary entity: Any entity on an

interpart boundary.
– E.g., Edges A, B, C & D are part-boundary

edges.
– Typically shared between parts (one part is

owner; other parts have copies).
• Internal entity: Any owned entity not on an

interpart boundary.
– E.g., Vertices 1-6 are internal to the red part.

• Ghost entity: Any non-owned entity that is
not a part-boundary entity.
– E.g., Regions X, Y, and Z are ghost regions for

the blue part.
• Copies: ghost entities + non-owned part-

boundary entities.

A

B
C

D

1

3

4

5

6

2

X

Y

Z

12

Part Neighbors

• Parts A and B are neighbors if Part A has copies of
entities owned by Part B or vice versa.

• Part neighbors
– iMesh_getNumPartNbors

• Return number of parts neighboring a given part.
– iMesh_getPartNbors

• Return remote part handles for part neighbors.
• Entities on part boundaries

– iMeshP_getNumPartBdryEnt
• Return number of boundary entities shared with a given part.

– iMeshP_getPartBdryEnts
• Return boundary entities shared with a given part neighbor.

– iMeshP_initPartBdryEntIter
• Iterator over boundary entities shared with a given part.

13

Parts and Entity Sets

• Part handles may be passed to iMesh
EntitySet functions for local operations.

• But also need functions accepting both
part handle and EntitySet handle.
– E.g., Boundary conditions.

• Store entities with the boundary condition in
an EntitySet.

• Iterate over entities in both a given boundary
condition EntitySet and a given part.

– E.g., Multiple meshes with a single
partition.

• Store meshes as separate entity sets in iMesh
instance.

• Generate a single partition of both meshes.
• Iterate over entities in both a given mesh

EntitySet and a given part.

Edges in BC EntitySet

Allow query of entities
in both red part and

BC EntitySet.

14

Parts and Entity Sets

• Return data with respect to both local part
handle AND entity set handle.
– Functions mimic subset of iMesh functions.
– iMeshP_getNumOfType
– iMeshP_getNumOfTopo
– iMeshP_getAllVtxCoords
– iMeshP_getVtxCoordIndex
– iMeshP_getEntities
– iMeshP_getAdjEntities
– iMeshP_initEntIter
– iMeshP_initEntArrIter

15

Entity Characteristics

• Each entity is owned by only one part per partition.
– Ownership grants right to modify.

• Entities may be copied on other parts.
– Shared boundary entities, ghost entities.

• Duplicated information for copies:
– Owner of an entity knows remote part handle and

remote entity handle of all its copies.
– All copies of entity know the entity owner’s part handle

and the entity handle on the owner.
– All boundary entities know all remote part handles and

remote entities handles of all copies.
• Copied data is computed by iMeshP_syncPartitionAll

or iMeshP_syncMeshAll.
– Queries do not require communication.

16

Entity Functions

• Ownership of entity.
– iMeshP_getEntOwnerPart

• Return (possibly remote) part handle of an entity’s
owner part.

– iMeshP_isEntOwner
• Return flag indicating whether a given part handle is an

entity’s owner.
– iMeshP_getEntStatus

• Return flag indicating whether entity is internal,
boundary, or ghost.

17

Entity Functions

• Entity copies
– iMeshP_getNumCopies

• Return number of copies of an entity.
– iMeshP_getCopyParts

• Return the remote part handles of copies of an entity.
– iMeshP_getCopies

• Return the remote part handles and remote entity handles of
copies of an entity.

– iMeshP_getCopyOnPart
• Return the remote entity handle for an entity copy on a given

part.
– iMeshP_getOwnerCopy

• Return the part handle and entity handle from an entity’s
owning part.

• Reminder: These functions do not require
communication.

18

Inter-part Mesh Operations

• iMeshP provides functions for inter-part
operations on mesh entities.
– Migrate large numbers of entities for, say, load

balancing.
– Migrate small numbers of entities for, say, mesh

modification.
– Update mesh database during mesh modification.
– Exchange tag values.

19

Inter-part Mesh Operation
Requests
• Inter-part mesh operations are coordinated via

iMeshP_RequestHandles.
– More than an MPI_Request!
– Indicates status of a given mesh operation.

• E.g., Migrate entity; Update vertex coordinates; Update part-
boundary entities; Exchange tag data.

– Contents are implementation dependent.
• MPI_Requests
• Flags/functions indicating what data to send, what to do with

data once received.
• May involve more than one round of communication (e.g.,

mesh migration).
– iMeshP_RequestHandle completes when entire mesh

operation is completed.
• iMeshP_RequestHandle enables…

– Overlapping communication/computation
– Asynchronous communication

20

Inter-part Mesh Operations can
be blocking or non-blocking.
• Blocking operations do not return from

iMeshP until request is complete.
• Non-blocking operations return from iMeshP

after request is made. Application later waits
until request is fulfilled.
– iMeshP API contains functions to …

• Wait for request completion,
• Test for request completion, and
• Poll for and carry out requests received.

– Allows overlapping communication/computation.
– Allows asynchronous communication.

21

Waiting for Requests

• Similar to MPI_Wait functions, except waiting for
mesh operation to complete.

• Block until requests are complete.
– iMeshP_Wait

• Returns when a given request completes.
– iMeshP_WaitAny

• Returns when any given request completes.
– iMeshP_WaitAll

• Returns when all given requests complete.
– iMeshP_WaitEnt

• Waits for a given request to complete; returns entity handles
modified by the request.

• Check completion status of requests.
– iMeshP_Test

• Tests for a given request’s completion.

22

Request Polling

• During mesh modification, parts sometimes
do NOT know how many requests they’ll
receive or from which processors they’ll
receive requests.

• Need to occasionally check for and handle
outstanding requests.
– iMeshP_pollForRequests

• Determine whether any requests are pending and, if so,
handle them.

23

Large-Scale Migration

• In application, each part calls iMeshP_exchEntArrToPartAll
to migrate (push) array of entities to new parts.
– iMeshP implementation …

• computes and posts appropriate receives.
• sends entities to new parts.
• deletes entities from old parts.
• returns an iMeshP_RequestHandle.

• Application does something else for awhile.
• In application, each part calls appropriate wait function

with the iMeshP_RequestHandle returned by send.
– iMeshP implementation …

• waits to receive messages.
• adds entities to new parts and

updates mesh.

24

Exchange Entity Tag Data

• Entity owners send tag data to copies.
• iMeshP API provides both blocking and

non-blocking versions of tag-data exchange.
– iMeshP_exchTagData and iMeshP_IexchTagData

T=1.1

T=1.1

T=1.3

T=1.2

T=1.2

T=1.2

T=1.1

T=1.1

T=1.2

T=1.2

T=1.2

T=1.3

25

Non-blocking Tag Exchange

• Application calls asynchronous tag exchange
function.
– iMeshP_IExchTags

• Sends tag data from owner to neighbors; posts receives for
tag data for copies.

• Returns iMeshP_RequestHandle.
– iMeshP_IExchTagsEnt

• Sends tag data from owner to neighbors; posts receives for
tag data.

• Returns iMeshP_RequestHandle.
– Call must be made by all participating parts.

• Parts know which neighbors they will communicate with.
• Application does something else for awhile.
• Application calls appropriate wait function with the

iMeshP_RequestHandle returned by exchange.

26

Edge Splitting with Non-Blocking
Update

• Blue and red parts decide to split edge A.
• Red part creates edges R1, R2 and vertex VR.
• Blue part creates edges B1, B2 and vertex VB.
• Blue and red parts call

iMeshP_replaceOnPartBdry to request
replacement of A with new edges and vertices on
opposite part.

• Blue and red parts call iMeshP_pollForRequests;
iMeshP implementation receives updates and
matches up
B1 ⇔ R1, B2 ⇔ R2, and VB ⇔ VR.

A

B1

B2 R2

R1
VB VR

27

V V

Mesh Smoothing with
Non-Blocking Update

• Blue part decides to move vertex V.
• Blue part calls iMeshP_updateVtxCoords to request

update of V’s vertex coordinates on red part.
• Red part calls iMeshP_pollForRequests; iMeshP

implementation receives request and updates V’s
coordinates.

28

A

A

Micro-migration for Mesh
Modification
• Blue part owns edge A.
• Red part needs edge A to do edge

swapping.
• Red part calls iMeshP_migrateEntity to

request edge A from Blue part.
• Blue part calls iMeshP_pollForRequests;

iMeshP implementation receives request
and sends A and its higher-order
adjacencies to Red part.

• Red part calls iMeshP_Wait to wait for its
migrate request to complete.

• Red part performs edge swapping.

29

More Mesh Modification
Functions
• Add/remove copies of selected entities.

– iMeshP_addGhostOf
• Request creation of a ghost entity on a given part.
• Returns iMesh_RequestHandle.

– iMeshP_rmvGhostOf
• Requests removal of a ghost entity on a given part.

30

Updating Mesh Consistency

• After all mesh modification is done, application calls
iMeshP_syncMeshAll.
– A collective, blocking call that signals mesh

modification operations are completed.
– Polls for and processes outstanding requests.
– Updates ghost entities for modified mesh.
– Performs operations needed for parallel mesh

consistency.

31

Ghost entities

• Ghost entities: copies of entities that not on
a part boundary.

• Ghost entities are not required to have remote
handles of all copies of the entities.

• Next task of parallel interface committee:
ghosting interface.
– Common ghosting patterns based on mesh

adjacencies will be easy to specify.
– Unusual ghosting patterns will likely be more

difficult to specify.

32

Support for Multiple Partitions

• Multiple partitions of the same mesh are often
desired.
– E.g., Crash simulations need …

• Partition of volumetric mesh for force calculations.
• Geometric partition of surface mesh for contact detection.

• Do not want to store/maintain both partitions always.
• Designate one partition the “primary” partition.
• Move entities to “secondary” partitions as needed.
• To do:

– Define functions to designate a partition as the
“primary” partition.

– Define functions for mapping from primary to secondary
partitions, and back again.

33

File I/O

• Needs:
– Load: Populate a mesh instance AND a partition.

Return the partition handle.
– Save: Store partition information in files.
– Support for parallel file I/O:

• Single file and P processes.
• N << P files distributed to P processes.
• P parallel files.

– Provide initial distribution of serial
file data to P>1 processes.

http://www.ceannmor.com/images/CanOfWorms.jpg

34

For More Information

• DraftInterface.h -- v0.1 syntax for functions
• requirements.pdf -- requirements document
• Bootcamp_March2008.pdf -- this presentation
• Itaps-parallel@mcs.anl.gov -- archive of subcommittee

discussions
• Karen Devine -- kddevin@sandia.gov

