INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

ITAPS Parallel Interface v0.1

March 2008

| 2 ST‘\\XNY :‘J[IEII;:VERSITY OF
(€ u) Rensselaer BReSK B

STATE UNIVERSITY OF NEW YORK

ST,
. %) Pacific Notthwest National Labotato
BROOKHEVEN ol 0/ < RIDGE NATIONAL LABORATORY G ry

INTEROPERABLE TOOLS FOR ADVANC! ULATIONS

L

“) Sandia

Parallel Interface Subcommittee () i

et Laboratories
2

Sandia
— Karen Devine, Vitus Leung

LLNL
— Lori Diachin, Mark Miller

Argonne
— Tim Tautges, Jason Kraftcheck

Rensselaer
— Mark Shephard, Onkar Sahni, Ken Jansen

U. British Columbia

— Carl Ollivier-Gooch

ITAPS,

Sandia
lu Il] ” National
et Laboratories

Parallel Interface Goals

3

* Primarily support distributed memory.
— Accept MPlI communicators from application.

— But allow use of global address space and shared
memory paradigms.

« Maintain backward compatibility of serial
iIMesh.

— Serial iMesh works as expected within a process.
— Serial iMesh works as expected for NWGrid.

Terminology

ITAPS

Sandia
’ r I L ” National
Laboratories
4

Process: a program executing; MPI process.
— Number of processes == MPl_Comm_size
— Process number == MPl_Comm_rank

Mesh instance: mesh database provided by an
implementation.

— Each process has one or more mesh instances.
Partition: describes a parallel mesh.

— Maps entities to subsets called parts.

— Maps parts to processes.

— Has a communicator associated with it.

Global operation: an operation with respect to data in all
parts in a partition’s communicator.

Local operation: an operation with respect to either a part’s
or process’ data.

ITAPS

Sandia
[IJ b ” National
! /' laboratories

Partition Characteristics

5

Maps entities to parts.

— Part assignments computed with respect to a set of
entities.

— Computed assignments induces part assignments for
adjacent entities.

Maps parts to processes.

— Each process may have one or more parts.

— Each part is wholly contained within a process.
Has a communicator associated with it.

— “Global” operations performed with respect to this
communicator.

Accessed via iMeshP_PartitionHandle.

INTEROPERABLE TOOLS FOR ADVANCE! SC/ ULATIONS

Partition Creation/Destruction [r]-q: oo

Laboratories
6

 Creation/Destruction

— iMeshP__createPartitionAll
« Takes MPI Communicator or NULL.

— iIMeshP_destroyPartitionAll

— iMeshP_syncPartitionAll

- After parts are added/updated, computes and stores
global information.

— Mapping of parts to processes.
— Number of parts in partition.
« Partition Queries
— iIMeshP_getPartitions
* Return all partition handles in this mesh instance.

— iMeshP_getPartitionComm
* Returns the MPlI Communicator or NULL.

INTEROPERABLE TOOLS FOR ADVANC! SC/ ULATIONS

L

{5) Sandia
[ﬁ_ﬂ National

et Laboratories

Partition Queries

7

« Mapping of parts to processes
— iMeshP_getNumParts

* Returns total number of parts in partition.
— iMeshP_getPartsOnRank

« Returns part handles for parts on a given process.
— iMeshP_getRankOfPart

* Returns process number for a given part.

— No communication; all values precomputed in
iMeshP_syncPartitionAll.

 Global mesh information
— iMeshP_getNumOfTypeAll

« Returns total number of entities with given type in a given partition and
entity set.

— iMeshP_getNumOfTopoAll

* Returns total number of entities with given topology in a given
partition and entity set.

— Require collective communication.

INTEROPERABLE TOOLS FOR ADVANC! ULATIONS

L

“) Sandia

Part characteristics (i) Natona

et Laboratories
8

Think in terms of parts, not processes.

— Number of parts may be less than, equal to, or greater
than number of processes.

Part contains entities it owns + copies of entities
needed for computation within the part.

Wholly stored in a single process.

Accessed via iMeshP_PartHandle.
— Local part handles identify on-process parts.
— Remote part handles identify off-process parts.

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

iMeshP_PartHandle (1) deoa_

* iMeshP_PartHandle may be substituted for
iBase EntitySetHandle in many iMesh functions to
perform local part operations.

— Get number of local entities in a part with
iMesh_getNumOfType, iMesh_getNumOfTopo.

— Get entities in a part with iMesh_getEntities.
— Add entity to a local part with iMesh_addEntToSet.
— Et cetera, et cetera, et cetera.

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

Part Creation/Destruction @ o

Laboratories
10

- Create/Destroy a part.

— iMeshP__createPart
* Creates a part and adds it to a partition.
— iIMeshP_destroyPart
* Removes a part and invalidates the part handle.

— After all parts are created and populated,
application must call iMeshP_syncPartitionAll to
precompute partition data.

More Terminology

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULAT

Sandia
National
Laboratories

11

Ownership: having the right to modify.

Part-Boundary entity: Any entity on an
interpart boundary.

— E.g., Edges A, B, C & D are part-boundary
edges.

— Typically shared between parts (one part is
owner; other parts have copies).

Internal entity: Any owned entity not on an
interpart boundary.

— E.g., Vertices 1-6 are internal to the red part.

Ghost entity: Any non-owned entity that is
not a part-boundary entity.

— E.g., Regions X, Y, and Z are ghost regions for
the blue part.

Copies: ghost entities + non-owned part-
boundary entities.

INTEROPERABLE TOOLS FOR ADVANCE! SCALE SIMULATIONS

Part Neighbors 'rfy | ational
__ laborattllges

- Parts A and B are neighbors if Part A has copies of
entities owned by Part B or vice versa.
« Part neighbors

— IMesh_getNumPartNbors
* Return number of parts neighboring a given part.

— iMesh_getPartNbors
* Return remote part handles for part neighbors.
- Entities on part boundaries

— IMeshP_getNumPartBdryEnt
* Return number of boundary entities shared with a given part.

— IMeshP_getPartBdryEnts
* Return boundary entities shared with a given part neighbor.

— iMeshP_initPartBdryEntiter
 Iterator over boundary entities shared with a given part.

Parts and Entity Sets

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

13

Part handles may be passed to iMesh
EntitySet functions for local operations.

But also need functions accepting both
part handle and EntitySet handle.

— E.g., Boundary conditions.

- Store entities with the boundary condition in
an EntitySet.

* Iterate over entities in both a given boundary
condition EntitySet and a given part.

— E.g., Multiple meshes with a single
partition.

- Store meshes as separate entity sets in iMesh
instance.

« Generate a single partition of both meshes.

- lIterate over entities in both a given mesh
EntitySet and a given part.

Edges in BC EntitySet

Allow query of entities
in both red part and
BC EntitySet.

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

Parts and Entity Sets () oo

Laboratories

14

 Return data with respect to both local part
handle AND entity set handle.

— Functions mimic subset of iMesh functions.
— iMeshP_getNumOfType

— iMeshP_getNumOfTopo

— iMeshP_getAllVtxCoords

— iMeshP_getVixCoordindex

— iIMeshP_getEntities

— iMeshP_getAdjEntities

— iMeshP _initEntlter

— iMeshP_initEntArriter

ITAPS,

Sandia
” National
/' Laboratories
15

Entity Characteristics

Each entity is owned by only one part per partition.
— Ownership grants right to modify.

- Entities may be copied on other parts.
— Shared boundary entities, ghost entities.

* Duplicated information for copies:

— Owner of an entity knows remote part handle and
remote entity handle of all its copies.

— All copies of entity know the entity owner’s part handle
and the entity handle on the owner.

— All boundary entities know all remote part handles and
remote entities handles of all copies.

« Copied data is computed by iMeshP_syncPartitionAll
or iMeshP_syncMeshAll.

— Queries do not require communication.

INTEROPERABLE TOOLS FOR ADVANC! ULATIONS

L

) . =\ Sandia_
Entity Functions {“:,}:,‘:2?{,293

* Ownership of entity.

— iMeshP_getEntOwnerPart

* Return (possibly remote) part handle of an entity’s
owner part.

— iMeshP_isEntOwner

* Return flag indicating whether a given part handle is an
entity’s owner.

— iMeshP_getEntStatus

* Return flag indicating whether entity is internal,
boundary, or ghost.

INTEROPERABLE TOOLS FOR ADVANCE! SCALE SIMULATIONS

° ° T Sad
Entity Functions (i Natonat
St LADOFatoONIES

17

* Entity copies
— iMeshP_getNumCopies
* Return number of copies of an entity.
— iMeshP_getCopyParts
* Return the remote part handles of copies of an entity.
— iMeshP_getCopies

* Return the remote part handles and remote entity handles of
copies of an entity.

— iMeshP_getCopyOnPart

* Return the remote entity handle for an entity copy on a given
part.

— iMeshP_getOwnerCopy

* Return the part handle and entity handle from an entity’s
owning part.

 Reminder: These functions do not require
communication.

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

o Sandia
Inter-part Mesh Operations @ {“a‘i}:,‘i';%}ges

* iMeshP provides functions for inter-part
operations on mesh entities.

— Migrate large numbers of entities for, say, load
balancing.

— Migrate small numbers of entities for, say, mesh
modification.

— Update mesh database during mesh modification.
— Exchange tag values.

: 1/
Inter-part Mesh Operation IﬁA;aﬁs

National

Re q uests laborattljges

* Inter-part mesh operations are coordinated via
iMeshP_RequestHandles.

— More than an MPI_Request!

— Indicates status of a given mesh operation.

- E.g., Migrate entity; Update vertex coordinates; Update part-
boundary entities; Exchange tag data.

— Contents are implementation dependent.
* MPI_Requests

* Flags/functions indicating what data to send, what to do with
data once received.

« May involve more than one round of communication (e.g.,
mesh migration).

— IMeshP_RequestHandle completes when entire mesh
operation is completed.

- iMeshP_RequestHandle enables...
— Overlapping communication/computation
— Asynchronous communication

ITAPS

Inter-part Mesh Operations can H[) Sonda

be blocking or non-blocking. / Laboratries

- Blocking operations do not return from
IMeshP until request is complete.

* Non-blocking operations return from iMeshP
after request is made. Application later waits
until request is fulfilled.

— iMeshP API contains functions to ...
* Wait for request completion,

* Test for request completion, and
* Poll for and carry out requests received.

— Allows overlapping communication/computation.
— Allows asynchronous communication.

. =
Waiting for Requests Nanona

INTEROPERABLE TOOLS FOR ADVANC! ULATIONS

L

Laboratories
21

Similar to MPI_Wait functions, except waiting for
mesh operation to complete.
Block until requests are complete.
— iMeshP_Wait
* Returns when a given request completes.
— IMeshP_WaitAny
* Returns when any given request completes.

— iMeshP_WaitAll

* Returns when all given requests complete.

— IMeshP_WaitEnt

- Waits for a given request to complete; returns entity handles
modified by the request.

Check completion status of requests.

— iMeshP_Test
« Tests for a given request’s completion.

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

Request Polling () deora_

* During mesh modification, parts sometimes
do NOT know how many requests they’ll
receive or from which processors they’ll
receive requests.

* Need to occasionally check for and handle
outstanding requests.

— iIMeshP_pollForRequests

- Determine whether any requests are pending and, if so,
handle them.

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

° ° Sandla
Large-Scale Migration @ e

In application, each part calls iMeshP_exchEntArrToPartAll
to migrate (push) array of entities to new parts.

— IMeshP implementation ...
« computes and posts appropriate receives.
» sends entities to new parts.
+ deletes entities from old parts.
* returns an iMeshP_RequestHandle.

Application does something else for awhile.

In application, each part calls appropriate wait function
with the iMeshP_RequestHandle returned by send.

— IMeshP implementation ...
« waits to receive messages.

* adds entities to new parts and
updates mesh.

: '?':agyy 4& =
R
5 B ANOZOTOS(
,'.4 \ ;:« ‘?;‘m?%
4

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULAT

Exchange Entity Tag Data () deora_

- Entity owners send tag data to copies.

- iMeshP API provides both blocking and
non-blocking versions of tag-data exchange.

— iMeshP_exchTagData and iMeshP_lexchTagData

S
T=1.1 T=1.2

T=1.2 //\\

5 N
rd

T=1.2 T=1.3

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULATIONS

Non-blocking Tag Exchange (1) deoa_

- Application calls asynchronous tag exchange
function.

— iMeshP_IExchTags

- Sends tag data from owner to neighbors; posts receives for
tag data for copies.

* Returns iMeshP_RequestHandle.

— IMeshP_IExchTagsEnt

- Sends tag data from owner to neighbors; posts receives for
tag data.

* Returns iMeshP_RequestHandle.
— Call must be made by all participating parts.
» Parts know which neighbors they will communicate with.
« Application does something else for awhile.

« Application calls appropriate wait function with the
iIMeshP_RequestHandle returned by exchange.

Edge Splitting with Non-Blocking =5 s

National

lﬁ)date labomt(21r6ies

Blue and red parts decide to split edge A.
Red part creates edges R,, R, and vertex VL.
Blue part creates edges B,, B, and vertex V.

Blue and red parts call
iMeshP_replaceOnPartBdry to request
replacement of A with new edges and vertices on
opposite part.

Blue and red parts call iMeshP_pollForRequests;
iMeshP implementation receives updates and

matches up
B, <R, B,<R, and V; < V.

Mesh Smoothing with e
Non-Blocking Update o

 Blue part decides to move vertex V.

* Blue part calls iMeshP_updateVtxCoords to request
update of V’s vertex coordinates on red part.

 Red part calls iMeshP_pollForRequests; iMeshP
implementation receives request and updates V’s
coordinates.

-

Micro-migration for Mesh () ndo
° ° ationa)
Modification @ aboratores

- Blue part owns edge A.

* Red part needs edge A to do edge
swapping.

* Red part calls iMeshP_migrateEntity to
request edge A from Blue part.

* Blue part calls iMeshP_pollForRequests;
iMeshP implementation receives request
and sends A and its higher-order
adjacencies to Red part.

* Red part calls iMeshP_Wait to wait for its
migrate request to complete.

* Red part performs edge swapping.

More Mesh Modification @gad| """""
° ational
Functions abortres

 Add/remove copies of selected entities.

— iMeshP_addGhostOf

* Request creation of a ghost entity on a given part.
* Returns iMesh_RequestHandle.

— iMeshP_rmvGhostOf
* Requests removal of a ghost entity on a given part.

INTEROPERABLE TOOLS FOR ADVANC! ULATIONS

Updating Mesh Consistency) Natona

Laboratories

30

- After all mesh modification is done, application calls
IMeshP_syncMeshAll.

— A collective, blocking call that signals mesh
modification operations are completed.

— Polls for and processes outstanding requests.
— Updates ghost entities for modified mesh.

— Performs operations needed for parallel mesh
consistency.

ITAPS

Ghost entities (1) Nt

S LADoratories

31

* Ghost entities: copies of entities that not on
a part boundary.

* Ghost entities are not required to have remote
handles of all copies of the entities.

* Next task of parallel interface committee:
ghosting interface.

— Common ghosting patterns based on mesh
adjacencies will be easy to specify.

— Unusual ghosting patterns will likely be more
difficult to specify.

ITAPS

Sandia
[IJ b ” National
! /' laboratories

Support for Multiple Partitions

32

Multiple partitions of the same mesh are often
desired.

— E.g., Crash simulations need ...
* Partition of volumetric mesh for force calculations.
+ Geometric partition of surface mesh for contact detection.

- Do not want to store/maintain both partitions always.
- Designate one partition the “primary” partition.
 Move entities to “secondary” partitions as needed.

e To do:

— Define functions to designate a partition as the
“primary” partition.

— Define functions for mapping from primary to secondary
partitions, and back again.

INTEROPERABLE TOOLS FOR ADVANCED PETASCALE SIMULAT

File I/O () deora_

 Needs:

— Load: Populate a mesh instance AND a partition.
Return the partition handle.

— Save: Store partition information in files.

— Support for parallel file I/O:
- Single file and P processes. S\
+ N << Pfiles distributed to P processes. |¢5, /
- P parallel files.

— Provide initial distribution of serial
file data to P>1 processes.

BLAs
Yy

/ RV
s Y/

htl‘p.‘//www.ceannor.com/imageS/CaanWorms.jpg

ITAPS

For More Information () Aot

National
laboratones

* Draftinterface.h -- v0.1 syntax for functions
* requirements.pdf -- requirements document
 Bootcamp_March2008.pdf -- this presentation

. -- archive of subcommittee
discussions

- Karen Devine -- kddevin@sandia.gov

