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Outline
m Flexible Mesh Data Base (FMDB)
m Partition model to support FMDB for parallel adaptive analysis

B Recent developments to support adaptive applications
@ Definition of parts and objects to be partitioned
® Importance of element and “FE node” balance
® Parallel Performance
® Application to large processor counts on large meshes

This work is supported by the DOE SciDAC program as part of the
Interoperable Technologies for Advanced Petascale Simulations,
and NSF through a petascale application grant




Meshes

B A piece-wise domain decomposition over which the simulation is to be run
B A mesh data structure provide services to create and/or use the mesh data
m Each application has its own needs of mesh representation

in terms of levels of entities and adjacencies used

= “flexibility in mesh representations”
B 3 approaches for mesh data structure design
® Fixed, specific mesh representation
® Fixed, general mesh representation
® Flexible mesh representation

Flexible Mesh Data structure
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B Achieving a good performance both in memory and computational cost



Nomenclature

the geometric model
the partition model
the mesh

Ve a set of topological entities of dimension d in model Ve{G,P,M}
the " entity of dimension d in model V. d=0 for a vertex, d=1
for an edge, d=2for a face and d=3 for a region. Edges, faces,
and regions are bounded by lower order entities. A shorthand
for {19},

{O(VH}  the entities on the boundary of V/

{V,-d{ V4l the set of entities of dimension g in model V that are adjacent

=
SS90

to V/
VAV the j entity in {V{Va}}
(Examples)

{ M VE}} a set of faces in the mesh
{M3’{M3}} a set of mesh regions adjacent to the mesh edge M3’

M. (M7, the 27 edge adjacent to the mesh region M,’



General Topology-based Mesh Data Structure’

Functional Requirements
B 7opological entities
O {M{Md}}, ad=0,1,2,3, for vertices, edges, faces, regions respectively
® Edges, faces, and regions are bounded by the lower order entities
B Geometlric classification
® Unique assomahon of entlty Md', to a geometrlc model
entity, G /, where d<a, is denoted by M, o EG J
o [ |nd|cates the Ieft hand entlty (or set) represents a
portion of the right-hand entlty in the discretization
® Multiple M 'classified on a G J

B Adjacencies Regions [&— |
O Connectmty between entities forming a graph I
® {M {M }} d¢q —| Faces (4
4 adjacent entities to M of dimension g H
¢ If d> g, downward adjacency . Edges
¢ If d< g, upward adjacency I
L3I Vertices [—

12 adjacencies



Mesh Representation Options

Categories

m Full vs. Reduced
® If a mesh representation stores all 0to d level entities, it is full,

otherwise, reduced.

m Complete vs. Incomplete
@ If 12 adjacencies are obtainable in O(1) time, it is complete,
otherwise, incomplete.

1 M.W. Beall and M.S. Shephard (1997) Int. J. Numer. Mech. Engng

2 J.F. Remacle et al (2003) Int. J. Numer. Mech. Engng

3 W. Celes et al (2005) submitted, Int. J. Numer. Mech. Engng
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Analysis of Mesh Data Structure

Memory Efficiency

m Analysis of 22 mesh operators
(ex) 12 adjacencies, entity creation,
entity existence check
® Greedy — 1,685 steps
® Circular — 16,771 steps
® One-level — 3,359 steps
® Complete MSR — 148,008 steps

NO . # entities of level /in a mesh

% Sent: cost for entity data

\Sadj: cost for adjacency

Z 2 Storage(M )

d=0 i=1

if[semtff MM BY xS, ]

Storage(M) =

i=1

® Storage(greedy) = 25N, S,,+342N,S, 4
® Storage(circular) = 25N,S,,+93N,S,
e Storage(one-level) = 25N, S,,+155N,S,

Example: 1m Tet, N=194k, S,,~70 bytes, S, =4 bytes

Representation Storage Requirements (MB) Storage decrease (%)

By computation | By experiment | By computation | By experiment
One-level 421.9 420.7 - -
complete MSR 122.7 116.4 75.3 771
MSR 104.2 96.4 70.9 72.3




Flexible Mesh Data Structure

Mesh Representation Matrix (MRM) ®

B A 4x4 matrix representing the needs of mesh representation
B Diagonal element R,
e 1,if {M{M}}is present in the representatlon
e -, if only {IM{M}} classified on G is present in the representation
@) 0 if {M{M}} is not present in the representation
W Non-diagonal element R,
o 1,if®,;= R,/ 1 and {M'{MJ}} is present in the representation
o -, if {M{M}} present only for stored {M{M}} and {M{Mi}}
o 0, if {M{Mi}} is not stored at all

B Examples
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Flexible Mesh Data Structure

Requirements of the Flexible Mesh Data Structure

B The representation should be maintained even with mesh modification
® Mesh entity creation
® Mesh entity deletion
® Mesh entity migration

B Restored implicit entities and adjacencies should be valid

m Cost of any mesh operator should not be a function of mesh size
except non user-requested adjacencies

v

Shape mesh data structure by setting mesh modification operators
to the proper ones that keep the representation correctly.

(It satisfies all 3 requirements listed)
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Distributed Mesh Data Structure

partition | boundary

Distributed Mesh
B Mesh divided into parts for distribution Po
on parallel computers

m Part P, consists of a set of mesh entities
assigned to the it part.

Partition Object
B The basic unit to which a part is assigned.

B A mesh entity to be partitioned N M3
® Mesh entities to be partitioned in the
example mesh are {// -, , M3, M2, M.}
m An EntityGroup.

Residence ParE | paso >3 ME 1 :
m Operator ®[M;] returns a set of part id’s Z
where M,-d exists. (e.g. ?[M,] ={P,, P,, P}) Mi] i K/Is e
m Residence part of M on P, [ 7 M2
e |If a partition object, @[M,d] ={P} L S Mo /

e Otherwise, ®[M] = U @[M/I M/ e {d(M7)}] P, @@zﬁj@




Partition Object

Mesh entity to be partitioned:
B Mesh entity that is not part bounded by any higher order mesh entity.

EntityGroup:
B A group of mesh entities to be partitioned that need to stay together during
the lifetime of the EntityGroup as defined by the needs of an application.

® Example - stack of prismatic elements in a boundary layer to support the
adaptation of the layer

PO Migration P1

Entity group rules
B Mesh entities in a group stay as a group during the life time of EntityGroup

B A mesh entity can only be in a single EntityGroup, and is defined once in
the EntityGroup

B EntityGroup information maintained before and after migration

B EntityGroup is dynamic as defined by the application which can create and
destroy an EntityGroup, or add/remove mesh entities in an EntityGroup



Mesh Partition through Zoltan

Perform mesh partition through Zoltan graph-based partitioning tool, and
will use Zoltan hypergraph-based partitioning tool in the near future.

In mesh partitioning, a partition object can be either a mesh entity to be
partitioned, or an EntityGroup.

Different colors represent different
EntityGroup’s
(3 EntityGroup’s in the 2D mesh).

Construct graph for mesh partition:

— Graph nodes = objects to be
partitioned (partition object).

— Graph Edges = mesh edge-
based
dependencies between two
objects.

— Weights = Set graph node and
graph edge weights.




Distributed Mesh Representation

Functional Requirements
B Communication links
® Remote part: non-self part where an entity is duplicated
® Remote copy: the memory location of the entity duplicated on the
remote part
@ Efficient mechanisms to update mesh partitioning and keep the
links between partitions are mandatory
m Entity ownership
@ Control communications and computations between remote copies
® Static ownership
¢ Owner part of an entity is fixed to the specific partition
regardless of mesh partitioning
¢ Not suitable for adaptive analysis due to severe load imbalance
® Dynamic ownership
¢ Owner part of an entity is determined dynamically depending on
mesh partitioning

& poor-to-rich part ownership @ % @



A Partition Model

Partition Model

B Purpose
® Represent mesh partitioning in topology
® Support mesh-level inter-partition communications
B An intermediary model located between the geometric model and mesh
m A set of topological entities (0 to d dimensional entities) representing
the collection of mesh entities that lie on part boundaries.

Geometric model

Partition model Partitioned mesh



Distributed Mesh Data Structure

Partition Classification

B The unique association of mesh entities to the

partition model entities
® In a hierarchy of domain decomposition,
,d;<d <d

M? C PJ C G&

Rules to Construct a Partition Model

m High-to-low mesh entity traversal
m Inheritance-first

m Connectivity-second

B New partition entity creation-last

|
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3D partitioned mesh partition model




Distributed Mesh Data Structure

Mesh Migration with Full Complete Representations
Given a list of pair <partition object, destination part id>
m STEP 1: Preparation — collect entities to be updated and reset their

and partition classification
m STEP 2: Determine @ of partition objects and downward entities

m STEP 3: Based on @, update the partition classification (partition model)
and collect entities to remove from each part

m STEP 4: Exchange entities and update remote copies

m STEP 5: Remove unnecessary, migrated entities collected in STEP 3

m STEP 6: Update the owner part of partition model entities based on
poor-to-rich ownership



Flexible Distributed Mesh Data Structure

Representational Requirement - Must be complete
m For each partition object M’

e Downward adjacent entities {a(M,-d)}
= Efficient interior entities restoration with validity
= HOWTO: For non-existing &, set &, to —
® For each downward adjacent Me{M;"{M}},
¢ Upward adjacent partition objects to determine if M,-p will exist on the
current local after migration
= Instead, use neighboring partition objects (Residence partition theorem)
= HOWTO: For each partition object M/, store {M’{M? }3, M/e {o(M")}

1 0 0 0 1 (0 (=) 0] 1 - — (1)
——oo=>——oo=>——oo
-0 - 0 -0 - 0 -0 - 0
1 0 0 1] 1 0 0 1] 1 0 0 1]

(ex) MRM adjustment for 3-D distributed mesh
B Communication links - remote copies for partition boundary entities




Flexible Distributed Mesh Data Structure

Mesh Migration with reduced complete representation
m STEP A: collect neighboring partition objects (-)
m STEP B: restore downward interior entities (-)
m STEP 1: collect entities to update and clear partition
classification and 2 of them.
m STEP 2: Determine ¢

m STEP 3: Update partition classification and collect
entities to remove

m STEP 4: create only necessary migrate-in entities in
representation and update remote copies

® Do not send interior entities which will not be on the
partition boundary (+)

STEP 5: remove unnecessary migrate-out entities
STEP 6: update entity ownership

STEP C: remove unnecessary interior entities and
adjacencies (-)

+: savings in migration time with flexible mesh representation in parallel
- : losses in migration time with flexible mesh representation in parallel




Flexible Distributed Mesh Data Structure

m Examples: 2-D mesh migration with the MSR

(d) Step 4: Exchange ents (e) Step 5: Delete migrated ents (e) Step C: Delete internal ents
and update comm. links




Multiple Parts Per Process

B Multiple parts (N>=0) can reside on one process, and one part resides
on only one process.

B Change the number of parts on each process dynamically, based on
Zoltan graph-based partitioning tool and migrating mesh entities
among parts.

B Load or write out N parts on M processes from or to N mesh files (N, M
> (0), assume one part per mesh file.

B Test Result: 8 million mesh exists on 8192 parts on 32 processes.

A 3D distributed mesh (31131 regions) in16 parts on 4 processes
(4 parts per process).




Implementation

Programming Elements

m C++: the STL, functors, templates, singletons, generic, etc.
m Parallel: MPI, Autopack!, Zoltan?

Highlights of Functionalities

B STL-like iterators to mesh entities, reverse classification, partition
entities, remote copies of an entity

m Arbitrary attachable data to mesh entities of various data types

B General parallel utility services (ex) rank(), size()

m Efficient inter-partition communications through automatic message
packing via Autopack

B Generic data communicator

B Easy-to-use Zoltan callbacks for interfacing with Zoltan and migrating
arbitrary user-attached data with mesh entities.

m Parallel mesh I/0O

1 R. Loy (2000) Argonne National Lab.
2 K. Devine et al (2005) Sandia National Lab.



Performance Test

Memory savings with flexible representation
m Serial
® 10% - 40% with ®2
® 11% - 53% with ®’
® 18% - 77% with ®*
m Parallel
® 8% - 35% with ®2
® 8% -44% with ®’
® 17% - 72% with ®*
Migration Cost
m STEP 4 (entity exchange) is the most
expensive

m With # partitions >20-24, # POs >300K,
migration with ®%, ®%, ®? outperforms that
with ®7 due to less # entity exchanges in

STEP 4
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Mesh Adaptation - Refinement

m Parallel Isotropic Mesh Adaptation on Cube Geometry
® Uniform mesh with uniform size field

adapted mesh
(2,127k tets)

initial mesh
(265K tets)

4

Tests run on IBM Blue Gene/L

B Slow processors
B Fast interprocessor communication




Mesh Adaptation - Refinement
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Overall computation time (sec)
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Mesh Adaptation - Refinement
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Mesh Adaptation - Refinement

run-time, ., * 1 processors, .,
run-time * n processors

Scalability =

0.99r

At 8 processors
m Initial mesh - 33.1K/processor
B Final mesh - 226K/processor

At 128 processors
Hm Initial mesh 2.0K/processor
B Final mesh 16.7K/processor

0.98

0.97

Scalability

0.96
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0.94

\ \ \ \
0'930 8 16 32 64 128

Number of Processors

Scalability for one iteration
of mesh adaptation




Mesh Adaptation - Refinement

0.08 =8= \Maximum
ne Median
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0.05 : Communication time
Ratio = .
o Total time
T 0.041
o
0.03+
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0 | | | |
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Communication to total time ratio for one iteration
of mesh adaptation




Mesh Adaptation - Refinement and Coarsening

m Parallel Isotropic Mesh Adaptation on Cube Geometry
® Uniform mesh with planar shock size field

initial mesh adapted mesh
(1,528Kk tets) (1,926Kk tets)




Mesh Adaptation - Refinement and Coarsening
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Mesh Adaptation - Refinement and Coarsening

4001

350

At 8 processors
300 m Initial mesh - 191K/processor
B Final mesh - 241K/processor

At 128 processors
200 m [nitial mesh 11.9K/processor
B Final mesh 15.0K/processor

2501

Overall computation time (sec)
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50O 8 16 32 64 128
Number of Processors

Total time for
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Mesh Adaptation - Refinement and Coarsening

r - run-time * N Processors
Scalability = base * 17 P base

run-time * n processors
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Scalability for five iterations
of mesh adaptation




Mesh Adaptation - Refinement and Coarsening
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Parallel Adaptive Analysis

Functions available to support parallel adaptive
m Distributed mesh representation capable of providing needed mesh

information
m Ability to distribute the mesh and support mesh level communications
between processors - —

® Partition model for inner
processor communications

® Mesh migration
m Parallel mesh modification
B Dynamic load balancing (Zoltan)

A

geometric

partitioned
model




Applications

m Parallel Anisotropic Mesh Adaptation on Torus Geome
® Two spherical shocks analytical size field &L

e ey

e —aN T \ = / |
Z1 SR NS NS %
= Ry ) < ; AR
s NS ivavs S

Initial mesh (20,067 tets)

=5 ~

L

Adapted mesh on 8 ptns (267,827 tets)




Adaptive Loop for Accelerator Design

m Complex CAD geometry
m Physics modeling by the SLAC Omega3P
m High level modeling accuracy needed
e E.g., 0.1% error in frequency predictions

N7
AT
SRR

Geometric Model Initial Mesh

SCOREC
Meshing

4 Mesh Database (AOMD)
4 Mesh Modification

SLAC
Omega3P

> Eigensolver
> Error Estimator

New Mesh

Adapted mesh (23,082,517 tets)



Mesh Adaptation for 1 Billion Element Mesh

Mesh size field of air bubbles distributing in a tube

(segment of the model) ! ® ® ® ® *
9.0E+04 i before adaptation
8.0E+04 |-

after adaptation

¢7.0E+04
'§6.0E+O4
55.0E+04
%’4.0&04
23.0E+04

2.0E+04

1.0E+04 |

T Y N HE S SRR L
0.0E+00 5 4000 8000 12000 16000
proc number

Number of regions of adapted mesh among 16k parts

® |Initial mesh: uniform, 17,179,836 mesh regions

® Adapted mesh: 160 air bubbles 1,064,284,042
mesh regions

® Multiple predictive load balance are used to

Initial and adapted mesh (zoomed =~ mMake the adaptation possible
for 1/2 bubble), colored by the @ Larger meshes possible (not out of memory) but

magnitude of mesh size field this element count is appropriate for solver




Nodal Balance by Local Modification

For light loaded mesh (small number of
regions for each process), well distributed
mesh (based on the number of regions)
could have bad nodal balance.

Local modification method is used to balance
the number of nodes on each part.

Region (node) ratio = number of region
(node)/average number of region (node)

Average number of regions for the test: 2434
Number of parts:1024
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FMDB is Part of ITAPS

m ITAPS tools (http://www.itaps-scidac.org)
® Provide a core functionality of the Interoperable Technologies for

Advanced Petascale Simulations (ITAPS) meshing tools
® The only ITAPS component thus far that supports
¢ Geometry-based adaptive analysis
¢ Distributed mesh operations in parallel
4 Flexible mesh representation

Mesh Component
Software DOE SciDAC

. FVIDE — Applications
e — ITAPS :
S —— Interfaces

* Mesquite —>
* Frontier




Closing Remarks

Highlights of the FMDB

H Flexible mesh data structure construct and maintain the
user-requested mesh representations

B Implemented in simulation packages supporting parallel
adaptive simulation

® Serial/parallel mesh adaptation
® Serial/parallel error estimation
® Easily linked with external analysis codes
B Open source available at http://www.scorec.rpi.edu/FMDB




