
47

Data : M , POsToMove

Result: migrate partition objects in POsToMove

begin
/∗ STEP 1: collect entities to process and clear partitioning data. See
§4.4.1 ∗/
for each Md

i ∈ POsToMove do
insert Md

i into entitiesToUpdate[d];
reset partition classification and P;
for each M q

j ∈ {∂(Md
i )} do

insert M q
j into entitiesToUpdate[q];

reset partition classification and P;
endfor

endfor
/∗ STEP 2: determine residence partition. See §4.4.2 ∗/
M setResidencePartition(POsToMove, entitiesToUpdate[q]);
/∗ STEP 3: update partition classification and collect entities to remove.
See §4.4.3 ∗/
for d ← 3 to 0 do

for each Md
i ∈ entitiesToUpdate[d] do

determine partition classification;
if Plocal /∈ P[Md

i ]
insert Md

i into entitiesToRemove[d];
endif

endfor
endfor
/∗ STEP 4: exchange entities. See §4.4.4 ∗/
for d ← 0 to 3 do

M exchangeEnts(entitiesToUpdate[d]);
endfor
/∗ STEP 5: remove unnecessary entities. See §4.4.5 ∗/
for d ← 3 to 0 do

for each Md
i ∈ entitiesToRemove[d] do

if Md
i is on partition boundary

remove copies of Md
i on other partitions;

endif
remove Md

i ;
endfor

endfor
/∗ STEP 6: update ownership. See §4.4.6 ∗/
for each P d

i in P do
owning partition of P d

i ← the poorest partition among P[P d
i ];

endfor
end

Algorithm 4.2: M migrate(M , POsToMove)



Note: term ’partition’ in Algorithm 4.2 means ’partition’ or ’part’ in ITAPS
parallel interface terms.

Algorithm Input Data:

• M, a distributed mesh with partition model P stored in each part.
Entity’s partition classification and remote copies are pre-computed.

• POsToMove, a list of partition objects to migrate and their destina-
tion part ids.

Result: Migrate partition objects in POsToMove

• STEP 1: Collect entities to process and clear their partition classifi-
cations.

In STEP 1, the entities collected in entitiesToUpdate include:

– Md
i ∈ entitiesToUpdate;

– For each Md
i , all downward entities that bound Md

i , and their
remote copies on other parts.

• STEP 2: determine residence parts where each mesh entity in enti-
tiesToUpdate will exist after migration.

• STEP 3: update partition classification for each Md
i ∈ entitiesToUp-

date. For each Md
i , if its residence parts does not include its current

local part, collect it into entitiesToRemove.

• STEP 4: exchange entities in entitiesToUpdate from dimension 0
to 3, send and receive messages (entity information) between parts,
and then create entities on the destination parts. The remote copies
of the entities created on the destination parts are updated through
communication.

• STEP 5: remove unnecessary entities in entitiesToRemove from di-
mension 3 to 0. If a mesh entity to remove is on the part boundary,
its remote copies on other parts must be removed through communi-
cation.

• STEP 6: update the ownership for each partition model entity P d
i

stored in the partition model P, based on poor-to-rich ownership rule.

1


