
WORKING DRAFT : Services and features provided by FMDB to
support parallel computing

Onkar Sahni, Ting Xie, Kenneth E. Jansen and Mark S. Shephard

September 25, 2007

Contents

1 Abstract 1

2 Partitioning and Inter-part Relationships 2

2.1 Concept of partition model . 2

2.2 Operations . 2

3 Load Balancing and Data Migration 4

4 File I/O 5

5 Ghost Entities 5

6 Multi-Parts per Process 5

7 Examples 6

1 Abstract

This document describes the services and features provided by FMDB [1] to support distributed-memory computing.
FMDB utilizes the concept of partition model to represent a partition, and creates inter-part relationships with the
help of partition model entities. The next five sections describe the concept of partition model and provide a set of
representative parallel operations for various services. Examples are presented in Section 7 to illustrate the usage of
these operations in finite element analysis and mesh-based adaptive simulations.

1

Figure 1: Hierarchy of domain decomposition: geometry model, partition model, and the distributed mesh with four
parts.

2 Partitioning and Inter-part Relationships

A partition is a collection of parts, which for mesh-based applications are typically sub-meshes. It describes the
distribution of data over parts. A part has a total amount of work associated with it and has defined interactions with
other parts. Each part exists wholly within one process, while multiple parts can reside on one process.

A partition model is a separate data model created in FMDB to represent a mesh partition. It can be viewed as a
component of hierarchical domain decomposition, and is developed between the geometric model and the mesh [1, 2],
see Figure 1.

2.1 Concept of partition model

• A part is a collection of objects, where objects are the basic unit the partitioning algorithm works with. An
object in mesh-based applications is a part mesh entity (for example, a mesh entity that does not bound any
other mesh entities of higher dimension in the case of a mesh of non-manifold domain), or a group of part mesh
entities. Each object is assigned to a unique part of the partition, where each part has a global part identifier(Id).

• A partition model consists of partition model entities, where each partition model entity is a set of mesh entities
with the same bounding parts. Figure 2 illustrates a distributed mesh, where mesh entities labeled with arrows
indicate the partition classification of the mesh entities onto the partition model entities, and its associated
partition model [1, 2].

• Each mesh entity has a unique association with a partition model entity within a partition, which is called
partition classification. For each partition model entity, the set of mesh entities of the same order classified on
it defines the reverse partition classification for the partition model entity [2].

• A mesh entity residing on a part boundary (part boundary entity) can exist on multiple part(s), but it has only
one owner part at any instant. Ownership of mesh entities is derived from its partition classification. Given a
mesh entity on a part boundary, the memory locations of duplicated copies on other parts along with residence
part Ids are called remote copies.

2.2 Operations

1. Partitioned Mesh Level Operations

2

2
1P

2
2P

1
1P

2
3P

3
3P

3
2P

0P 1P

3
1P

2P

1
1P

3
1P

3
2P2

1P

2
2P 2

3P

3
3P

P0 P1

P2

Figure 2: Concept of partition model: Distributed mesh and its association with the partition model via partition
classifications.

Figure 3 shows a partitioned mesh, where mesh entities on the part boundaries are duplicated on corresponding
parts.

• void M boundingPids(OUT array<int> bps)

Get a list of part Ids of all neighboring parts to the current part.

For example, in Figure 3, the bounding parts of part P1 are parts P0 and P2.

• pPartBdryEntIter M partBdryEntIter(IN pMesh mesh, IN int dim)

Given a part and an integer dim, get an iterator over mesh entities of dimension dim (0 for mesh vertices,
1 for mesh edges and 2 for mesh faces) on the part boundary. It is used with: pEntity PartBdryEntI-
tex next(INOUT pPartBdryEntIter).

2. Partition Model Level Operations

• void PModel update(INOUT pPModel, IN pMesh mesh)

Given a partitioned mesh (collective call), update the ownership of partition model entities according to
poor-to-rich rule based on the number of objects residing on each part and create new partition model
entities if necessary. This utility is typically required during dynamic (re-)partitioning or on-the-fly mesh
migration.

• pPModelEntIter PModel entityIter(IN pPModel pmodel)

Provides an iterator over partition model entities. It is used with: pPModelEntity PModelEntItex next(INOUT
pPModelEntIter).

3. Entity Level Operations

• bool EN onPartBdry(IN pENtity entity)

Given a mesh entity, check if it is on any part boundary.

• bool EN isOwner(IN pEntity entity)
pRemoteCopy EN ownerCopy(IN pEntity entity)

Check if the given mesh entity (copy on current part) is the owner copy. Each mesh entity residing on any
part boundary exists on multiple parts, but only a single copy among all duplicate copies on neighboring
parts is assigned as owner. For a mesh entity on part boundary, also get its remote copy information relating
to owner part (i.e., part Id of owner part and memory location on it).

3

P1 P2

P0

M 0
1

M 1
j

Part vertex

Part edge3

Part edge2Part edge1

Figure 3: Inter-part relationships: 2D illustration of distributed mesh data paradigm.

• pEntity EN getRemoteCopy(IN pEntity entity, IN int pid)
void EN getRemoteCopies(IN pEntity entity, OUT array<pRemoteCopy> > remoteCopies)
void EN addRemoteCopy(INOUT pEntity entity, IN pRemoteCopy remoteCopy)
and void EN clearRemoteCopy(INOUT pEntity entity, IN pRemoteCopy)

Given a mesh entity, get its remote copy relating to part with part Id pid, or get list of all remote copies.
Also add or clear a remote copy for a given mesh entity.

• pPModelEntity EN getPClassification(IN pEntity entity)
void EN setPClassification(INOUT pEntity entity, IN pPModelEntity pmentity)

Given a mesh entity, get or set its partition classification.

3 Load Balancing and Data Migration

FMDB supports both static and dynamic load balancing through Zoltan library, including both initial partition and
re-partition. It supports weighted partitioning with user-specified, non-uniform object weights along with communi-
cations weights.

• void EN setWeight(INOUT pEntity entity, IN double b)
double EN getWeight(IN pEntity entity)

Given a mesh entity, set or get its weight.

4

• void PM loadbalance(INOUT pMesh mesh, IN pmMigrationCallbacks cb)

Perform (re-)partitioning and load balancing (collective call). Zoltan library is used to determine the part as-
signment for all the objects and FMDB performs mesh migration to construct the partitioned mesh. Callback
mechanism is required to perform migration of user-specific data, for example, solution fields over mesh.

• void PM migration(INOUT pMesh mesh, IN array<pair<pEntity,pid> > objectsToMove, IN pmMigrationCall-
backs cb)

Given a partitioned mesh (collective call) and an associative list (objectsToMove) of objects and their destination
part Id, migrate the desired mesh entities to construct or modify the partitioned mesh.

4 File I/O

FMDB supports reading and writing of a partitioned mesh into files with the ability to store partition information
(currently each part has its independent file).

• void PM load(IN pMesh mesh, IN char *filename)

Load the partitioned mesh (collective call) from files.

• void PM write(IN pMesh mesh, IN char *filename)

Write the partitioned mesh (collective call) into files.

5 Ghost Entities

FMDB supports ghosting of mesh entities that are in proximity to part boundaries (this is an ongoing effort).

• void PM createGhost(INOUT pMesh mesh, IN pmMigrationCallbacks cb)

Given a partitioned mesh (collective call), create information about ghost entities.

• void PM expandGhost(INOUT pMesh mesh, IN pmMigrationCallbacks cb, IN array<pEntity> vtsToExpand,
IN int dimToExpand)

Given a partitioned mesh (collective call), expand the layer of ghost entities according to vtsToExpand.

• void PM removeGhost(INOUT pMesh)

Given a partitioned mesh (collective call), remove the ghost entities.

6 Multi-Parts per Process

There is ongoing effort to allow FMDB to support multiple parts per process.

• void PM setNumParts(IN array<int> int arr)

Set the number of parts over all processes (collective call). User can specify multiple parts per process through
this operator.

5

• void PM getNumParts(IN array<int> int arr)

Get the number of parts over all processes (collective call).

• void PM loadbalance(IN array<pMesh> mesh, IN pmMigrationCallbacks cb)

Perform partitioning and load balancing (collective call) with multiple parts per process. And user-specific data
can be handled with the help of given callback object cb.

7 Examples

This section demonstrates the services and features provided by FMDB [1], to support distributed-memory computing,
with the help of examples. Four types of examples are presented that cover a wide range of applications under parallel
adaptive mesh-based simulations:

1. Inter-part relationships: example - parallel mesh-based analysis like finite-element solver.

2. Dynamic inter-part links: example - subdivision of mesh entities.

3. On-the-fly mesh migration: example - execution of local mesh modification operator of edge collapse.

4. Dynamic partitions: example - re-partitioning for dynamic load balance, for example, after mesh adaptation.

Example 1: parallel mesh-based analysis (inter-part relationships)

Typically in a distributed (parallel) finite element solver, an initial step of computations is performed on each part of the
partition to assemble local (part) information which is followed by a communication step to gather global information
through inter-part assembly process. In the communication phase, mesh entities (representing degree of freedoms)
that reside on part boundaries, and are duplicated over multiple parts (see Figure 3), dictate the inter-part assembly
process. In Figure 3 mesh vertex M0

1 resides on boundary of three parts whereas mesh edges M1
j (and their bounding

mesh vertices) reside on two. To apply distributed mesh data paradigm the concept of partition model is utilized which
not only provides information about part boundary but also distinguishes between each set of mesh entities formed by
ones with the same bounding parts (each set represents a partition model entity), see Figure 2. Inter-part relationships
(as supported by FMDB) required to facilitate this process includes:

• M boundingPids(): Other parts sharing part boundary with a given part (i.e., neighboring parts); to create
communication traces between neighboring pair of parts in the partition.

• M partBdryEntIter(): Iterator over mesh entities residing on part boundaries; to determine communication
volume between neighboring pair of parts and fill-in communication arrays.

• EN isOwner() and EN ownerCopy(): Mesh entity ownership information (a single copy among all duplicates
on neighboring parts is assigned as owner); to set-up control relationships for governing the inter-part assembly
process, it is also referred to as master-slave control relationships.

• EN getRemoteCopies(): Remote copies (memory location of a mesh entity duplicated on neighboring parts
along with their residence part Ids); to execute inter-part assembly process for mesh entities on part boundary.

Example 2: subdivision of mesh entities (dynamic inter-part links)

Mesh refinement usually relies on subdivision templates where marked mesh edges are split/divided along with mesh
entities surrounding them. To apply such an operation on distributed mesh requires the flexibility of dynamic inter-part

6

links such that each part can apply subdivision templates locally (regardless of breaking inter-part links) and then carry
a communication step to repair the broken inter-part links. Figure 4 illustrates the process of subdivision on distributed
mesh for a 2D case. The utilities (as provided by FMDB) needed to perform such an operation includes:

M1
6

P0
P0 P1 P1P0

(a) (c)(b)

M1
0 M1

1 M1
2

{P0,M1
0 ,M0

2 ,M1
5 ,M1

6}

P1 {P1,M1
1 ,M0

1 ,M1
3 ,M1

4}

M0
2

M1
3

M0
1

M1
4

M1
5

Figure 4: Dynamic inter-part links: schematic of distributed subdivision of mesh entities for a 2D example.

• EN onPartBdry() and EN getRemoteCopies(): Check if a mesh entity to be subdivided is on part boundary
and get remote copies for ones on part boundary; to create communication messages to repair inter-part links
broken due to subdivision.

• EN addRemoteCopy() and EN clearRemoteCopy(): add or clear remote copy information for a given mesh
entity; to repair/update inter-part links.

• EN getPClassification() and EN setPClassification(): get or set partition classification of a mesh entity; to
assign partition model entity association/classification of child mesh entities derived from parent mesh entities.

Example 3: local mesh modification of edge collapse (on-the-fly mesh migration)

Mesh coarsening based on local mesh modifications relies on repeated evaluation and execution of mesh modification
operators, majorly edge collapse, that change both the local topology and geometry. Since the direct evaluation
and/or execution of such operators on mesh entities on any part boundary for distributed meshes are complex as
well as inefficient due to complicated communication pattern; a on-the-fly local (cavity level) mesh migration-based
parallelization approach is applied. In such a situation, mesh entities affected by the operation are first migrated into
one single part and then the operation is executed locally on the single part. Figure 5 demonstrates the concept using
a edge collapse operator for a 2D case (where bold line representing mesh edge residing on parts P1 and P3 needs to
be collapsed). The distributed mesh support, provided by FMDB, utilized for such operators include:

P0
P1

P2 P3

P0 P0

On-the-fly
mesh migration

Collapse local
to single part

Figure 5: On-the-fly mesh migration: schematic of distributed edge collapse operation for a 2D case.

7

• EN onPartBdry(): Check if a mesh entity involved in collapse operation is on part boundary; to invoke migra-
tion of local cavity affected by the operator.

• PM migration(): migrate mesh entities affected by coarsening locally to parts; to allow for serial execution of
collapse operator. It is invoked once coarsening of the interior mesh (excluding part boundary) has been carried
out.

• EN getRemoteCopies(), EN addRemoteCopy() and EN clearRemoteCopy(): get remote copies and also add
or clear remote copies of mesh entities on part boundaries; to perform on-the-fly mesh migration and update
inter-part boundaries.

• PModel update(): update the ownership of partition model entities and/or create new partition model entities
if necessary; to update partition model due to mesh migration.

• EN getPClassification() and EN setPClassification(): get or set partition classification of a mesh entity; to
assign partition model entity association/classification of migrated mesh entities.

Example 4: re-partitioning for load balance (dynamic partitions)

In mesh-based adaptive simulations, as the partitioned mesh is modified the computational load (dependent on mesh
entities) on each part is altered. To be able to balance the load to effectively progress the simulations dynamic partitions
are required, see Figure 6. To support dynamic load balancing, FMDB provides following operations:

P2P1

P0

1

1
1

11

1

0
0

0

0

2

2

1

1

1

0

0
0

1
1

1
1

1
2

2
2

2
2

2

2 2

2

0

2
2

2

0

1

1

P1 P2

P0

Re-partitioning

Figure 6: Dynamic partitions: re-partitioning to support dynamic load balancing; (left) mesh faces showing destination
parts and (right) after mesh migration.

• EN setWeight(): Set a weight representing computational load for a given mesh entity; to allow for re-partitioning
of a mesh with non-uniform load distribution.

• PM loadBalance() (which calls Zoltan library and PM migration()): Perform load balance using Zoltan library
and migrate mesh entities; to construct the partitioned mesh.

• EN getRemoteCopies(), EN addRemoteCopy() and EN clearRemoteCopy(): get remote copies and also add
or clear remote copies of mesh entities on part boundaries; to update inter-part boundaries due to re-partitioning.

• PModel update(): update the ownership of partition model entities and/or create new partition model entities
if necessary; to update partition model due to re-partitioning.

8

• EN getPClassification() and EN setPClassification(): get or set partition classification of a mesh entity; to
assign partition model entity association/classification of migrated mesh entities.

References

[1] E. S. Seol and M. S. Shephard (2006) Efficient distributed mesh data structure for parallel automated adaptive
analysis. Engineering with Computers 22:197-213.

[2] E. S. Seol. FMDB:Flexible Distributed Mesh Database for Parallel Automated Adaptive Analysis. PhD disserta-
tion, RPI, 2005.

9

