AGTk 2.2 - Simplifying shared application development

In previous columns, I've discussed the facilities provided by the Access Grid Toolkit for developing shared applications. In this column, I'll cover a convenience class included in the 2.2 release that bundles together much of what is needed to develop shared applications. Afterward, I'll provide an example of a shared application that I developed in a couple hours at home.

Shared applications will, minimally, perform the following functions:

· Join a shared application instance

· Connect an event client to the shared application event service

· Register callbacks to handle events
· Send events

More involved shared applications may require additional functionality:

· Log application execution

· Store application state in venue

· Provide participant info

The SharedAppClient class

To address these needs, the AG team constructed the SharedAppClient class. It includes interfaces to provide shared application developers with clear access to the support they need to develop applications as easily as possible. For example, with the SharedAppClient, the single call:

 Join(appServiceUrl)

will join the shared application session, create an event client, and connect the event service for the shared application. The appServiceUrl is an argument to the shared application client. Events can be registered using a simpler method than previously:
 RegisterEventCallback(eventType, callback)

where the eventType is defined by the application, and the callback is a method that will be called when an event of the specified type is received by the event client. The callback must accept a single argument: the event that was sent. The callback will typically extract the relevant data from the Event object passed in, and handle it however is appropriate for the application.
Applications can send events by calling the SendEvent method, which takes an application-defined event type and data as arguments:

 SendEvent(eventType, data)

The SharedAppClient class also provides interfaces for the additional functionality described above:

· Application logging

InitLogging(debug = 0, log = None)

· Storage/retrieval of application state, so new participants can synch with the current application state
SetData(dataKey, dataValue)

GetData(dataKey)

· Participant Info, so shared apps can display a list of participants
GetParticipants()
SetParticipantProfile(ClientProfile)

· Retrieve the URL of the venue in which the shared application resides

GetVenueURL()
Some of these interfaces are new, while others are simplified to hide details that developers don’t need to know. Documentation for the complete SharedAppClient interface is available online at http://www.mcs.anl.gov/~turam/AG/SharedAppClient.html .
Example: SharedGnuplot

Gnuplot is a program widely used for plotting scientific data. It is very straightforward to use: issue plot commands at the prompt, and the resulting plot is displayed in a window.

For an example of shared application development using the SharedAppClient class, I developed a shared version of Gnuplot. In this case, when one user inputs a plot command, it is propagated to the other users over the event channel, and executed locally, so that they also see the plot.

The example consists of a command processor and a GnuplotSharedAppClient. The command processor is derived from the one found in the Python cmd module. It takes commands, sends them to Gnuplot, and calls a callback registered to deal with commands. The callback, in this case, is a method in GnuplotSharedAppClient that sends the command to other participants. When this event is received by other clients, they send the command to their Gnuplot command processor so that the plot is displayed locally.

The command processor is just a front-end to Gnuplot, so accepts any valid Gnuplot command. There are a couple built-in demo commands included; type 'demo1' or 'demo2' to view interesting sample plots.

The example works on both Windows and Linux; on either platform, it requires that the following packages be installed:

· Gnuplot (http://gnuplot.info)

· Gnuplot.py (http://gnuplot-py.sourceforge.net)

· Numeric Python (http://numpy.sourceforge.net)

This example is about 225 lines of code, including comments and the demo command sets. It shows how simple it is to develop a shared application for the AccessGrid: the AG-specific code accounts for less than half of the program. The full source code is available at http://www.mcs.anl.gov/~turam/AG/SharedGnuplot.zip. To install the package, after installing the aforementioned prerequisites, download it and run the AG packaging tool:
agpm.py –z SharedGnuplot.zip
Then you should be able to add a SharedGnuplot application session to a venue, and join it to start your SharedGnuplot client.
The SharedAppClient is also being used in the SharedPresentation and SharedBrowser applications, so developers can refer to those as alternative examples.
