Video Quality Enhancement of Access Grid System employing DV transmission

Sangwoo Han

swhan@kjist.ac.kr

2003-12-01

1. Introduction

The current version of AGTk uses VIC as video transmitter and renderer. However, VIC only supports 300Kbps video stream, so that it cannot give people immersion on video conferencing. In order to make up this problem, I try to integrate Digital Video with Access Grid; Digital Video can support 30Mbps and its application is DVTS (Digital Video Transport System) made by WIDE project in Japan. In order to integrate DV with AG, I suggest DVConsumerService, DVProducerService, and DVTS Agent (DVRecv, DVSend). The remainder of this document explains three components of this AG employing DV transmission.

2. Architecture

This session explains VenueServer-side components and VenueClient-side components. The former includes Capability class, StreamDescription class, Venue class, and ProcessManagerWin32 class. The

latter includes DVConsumerService, DVProducerService, and DVTS Agent (DVRecv, DVSend).

2.1. Venue Server

In order to let Venue server recognize DV, I added DV type to Capability class. In table 1, shaded words mean the added part.

	class Capability:

 PRODUCER = "producer"

 CONSUMER = "consumer"

 AUDIO = "audio"

 VIDEO = "video"

 TEXT = "text"

 DV = "dv"

Table 1. Capability class

Unlike VIC, DVTSs must not share a multicast address to transmit video from all nodes. The video rate of DV is similar to 30Mbps. If all Venue client send their own 30Mbps videos through a multicast address, venue clients must receive all video traffic, included undesired video. Then network traffic excess the network capability. In order to make up this problem, I try to allocate a unique multicast address to each DV session. This multicast address is called ‘video multicast address.’ StreamDescription class has the instance variable ‘dvlocation’ to store video multicast address.

	class StreamDescription(ObjectDescription):

 """A Stream Description represents a stream within a venue"""

 def __init__(self, name=None,

 location=MulticastNetworkLocation(),

 capability=Capability(),

 encryptionFlag=0, encryptionKey=None,

 static=0):
ObjectDescription.__init__(self, name, None, None)

 self.location = location

 self.capability = capability

 self.encryptionFlag = encryptionFlag

 self.encryptionKey = encryptionKey

 self.static = static

 self.dvlocation = MulticastNetworkLocation()

Table 2. StreamDescription class

NegotiatedCapability function gives two kinds of multicast address to VenueClient supporting DVProducerService. First one is ‘session multicast address.’ Session multicast address is an address to exchange several messages with DVTS Agents. All DVTSs Agent announce their own video multicast address through session multicast address.

	def NegotiateCapabilities(self, clientProfile, privateId):

 streamDescriptions = []

 for clientCapability in clientProfile.capabilities:

 if clientCapability.role == Capability.PRODUCER:

 matchesExistingStream = 0

 # add user as producer of all existing streams that match

 for stream in self.streamList.GetStreams():

 if stream.capability.matches(clientCapability):

 streamDesc = stream

 if stream.capability.type == Capability.DV:
 dvAddr = self.AllocateMulticastLocation()
 streamDesc.dvlocation = dvAddr
 self.streamList.AddStreamProducer(privateId, streamDesc)

 streamDescriptions.append(streamDesc)

 matchesExistingStream = 1

 log.debug("added user as producer of existent stream")

 # add user as producer of new stream

 if not matchesExistingStream:

 capability = Capability(clientCapability.role,

 clientCapability.type)

 capability.parms = clientCapability.parms

 addr = self.AllocateMulticastLocation()

 streamDesc = StreamDescription(self.name,

 addr,

 capability,

 self.encryptMedia,

 self.encryptionKey,

 0)

 dvAddr = self.AllocateMulticastLocation()
 streamDesc.dvlocation = dvAddr
 log.debug("added user as producer of non-existent stream")

 self.streamList.AddStreamProducer(privateId, streamDesc)

 # Distribute event announcing new stream

 self.server.eventService.Distribute(self.uniqueId,

 Event(Event.ADD_STREAM, self.uniqueId,

 streamDesc))

 clientConsumerCapTypes = []

 for capability in clientProfile.capabilities:

 if capability.role == Capability.CONSUMER:

 clientConsumerCapTypes.append(capability.type)

 for stream in self.streamList.GetStreams():

 if stream.capability.type in clientConsumerCapTypes:

 streamDescriptions.append(stream)

 return streamDescriptions

Table 3. NetgotiatedCapabilities function in Venue class- ProcessManagerWin32

ProcessManager have the role of running or stopping program. Existing ProcessManagerWin32 uses terminateprocess() function to stop processes. However, for the case of DVTS agent model, terminateprocess() function cannot be used. DVSend and DVRecv runs DVTS. If ProcessManagerWin32 try to stop DVSend or DVRecv using terminateprocess() function, it can kill DVSend or DVRecv process. However, it cannot kill DVTS, which is child process of DVSend or DVRecv. In order to kill DVTS both DVTS Agent and DVTS, I modified terminate_process and terminate_all_process function. These functions use win32api.PostThreadMessage() function in order to transmit WM_QUIT message to DVTS Agent. After DVTS Agent receives WM_QUIT, it kills DVTS process.

	class ProcessManagerWin32:

 def __init__(self):

 self.processes = []

 self.threadid = dict()
 def start_process(self, command, arglist):

 cmdline = command

 for arg in arglist:

 arg = str(arg)

 if arg.find(" ") != -1:

 arg = '"' + arg + '"'

 cmdline += " " + arg

 rc = None

 try:

 startup_info = win32process.STARTUPINFO()

 log.debug("Creating process: %s", cmdline)

 info = win32process.CreateProcess(

 None, # AppName

 cmdline, # Command line

 None, # Process security

 None, # Thread security

 0, # Inherit handles?

 win32process.NORMAL_PRIORITY_CLASS,

 None, # New environment

 None, # Current directory

 startup_info)

 log.debug("Create process returns: %s", info)

 self.processes.append(info[0])

 self.threadid[info[0]] = info[3]
 rc = info[0]

 except win32process.error, e:

 log.exception("process creation failed: %s", e)

 return rc

 def terminate_all_processes(self):

 for phandle in self.processes:

 win32api.PostThreadMessage(self.threadid[phandle], 18, 0, 0)
 win32event.WaitForSingleObject(phandle, 500)
 try:

 win32process.TerminateProcess(phandle, 0)

 except win32process.error, e:

 log.exception("couldn't terminate process %s: %s", phandle, e)

 self.processes = []

 self.threadid = {}

 def terminate_process(self, phandle):

 win32api.PostThreadMessage(self.threadid[phandle], 18, 0, 0)
 win32event.WaitForSingleObject(phandle, 500)
 try:

 win32process.TerminateProcess(phandle, 0)

 self.processes.remove(phandle)

 del self.threadid[phandle]

 except win32process.error, e:

 log.exception("couldn't terminate process %s: %s", phandle, e)

Table 4. ProcessManagerWin32 class

2.2. Venue Client

Figure 1 shows the architecture of Access Grid Node. As stated above, DVProducerService and DVConsumerService as new service to transmit DV. In addition, DVSend and DVRecv are added as DVTS Agent. These two application have the role of connecting point between DVServices and DVTS. Lastly, Modified DVTS is added. Modified DVTS can recognize some arguments: session multicast address and video multicast address.

[image: image1.png]Node Service

Service Manager

Video
Producer
Server

Audio
Service

Figure 1. Access Grid Node employing DV transmission

Figure 2 shows the relationship between DVTS Agent and AG node. In Step ①, Venue Server transmits session multicast address and video multicast address to Venue Client. In Step ②, Venue Client sends both multicast addresses to AG Node. Then, in step ③, AG Node transmits video multicast address and session multicast address to DVSend. At this time, in step ④, DVSend creates new video multicast session using its own video multicast address. In addition, AG Node sends only session multicast address to DVRecv. In step ⑤, DVSend transmits its own video multicast address through session multicast address. Simultaneously, DVRecv receives other video multicast address from DVSend of other AG Node through session multicast address.
[image: image2.png]@ ®

=

Venue Client

Video |

V¥ Multicast 1)

&)
®

Session |

Multicast)
Video

Venue Server

A\

Node
2

Venue Client

Session multicast address
Video multicast address 1
Video multicast address 2
Create multicast session

vive

Figure 2. The relationship between DVTS Agent and AG Node

There are two kinds of DVService: DVConsumerService and DVProducerService. The following source codes show the source code of DVService.

	class DVConsumerService(AGService):

 def __init__(self, server):

 AGService.__init__(self, server)

 self.capabilities = [Capability(Capability.CONSUMER, Capability.DV)]
 self.executable = "DVRecv"
 pass

 def Start(self):

 __doc__ = """Start service"""

 try:

 options = []

 options.append("-s")
 options.append('%s' % self.streamDescription.location.host)
 self.log.info("Starting DVConsumerService")

 self.log.info(" executable = %s" % self.executable)

 self.log.info(" options = %s" % options)

 self._Start(options)

 except:

 self.log.exception("Exception in DVConsumerService.Start")

 raise Exception("Failed to start service")

 Start.soap_export_as = "Start"

Table 5. DVConsumerService- DVProducerService

	class DVProducerService(AGService):

 def __init__(self, server):

 AGService.__init__(self, server)

 self.capabilities = [Capability(Capability.PRODUCER, Capability.DV)]
 self.executable = "DVSend"
pass

 def Start(self):

 try:

 if self.resource == "None":

 vicDevice = "None"

 else:

 vicDevice = self.resource.resource

 options = []

 options.append("-s")
 options.append('%s' % self.streamDescription.location.host)
 options.append("-v")
 options.append('%s' % self.streamDescription.dvlocation.host)
 self.log.info("Starting DVProducerService")

 self.log.info(" executable = %s" % self.executable)

 self.log.info(" options = %s" % options)

 self._Start(options)

 #os.remove(startupfile)

 except:

 self.log.exception("Exception in DVProducerService.Start")

 raise Exception("Failed to start service")

 Start.soap_export_as = "Start"

Table 6. DVProducerService

Figure 3 shows the user interface of DVTS Agent. The left side is DVSend, and the right side is DVRecv.

[image: image3.png][=lo/x|
i Fie Edt Help

Venue [24111 Digital Video Sender

575.10,22.100. Select All

Video [225.10.22.100

Unselect All

Status : sending video.

o

Run DVTS.

Close DVTS.

Session : 224.1.1.1
Note.

Select the session participants to be shown and press
'Run DVTS' button.

Figure 3. User interface of DVTS Agent

3. Conclusion

To sum up, proposed systems enable current Access Grid to employ DV transmission. We did test this system between two PCs in KJIST, and this test is successful. We will do test between KJIST and KISTI (Korea Institute of Science and Technology Information). I am sure that this test will be successful. However, this system has some problem. The major problem is that DVTSs consume so much CPU power. During the test, we can do video conferencing between only two nodes using AG system employing DV transmission. If we try to make more three DV sessions, our node cannot be tolerant. In order to make up this problem, it is necessary to use layered multicast. After we make this system mature, we are going to adapt layered multicast to this system. The other problem is that this system can use only DVProducerService and DVConsumerService. If we try to use DVService with AudioService, VideoConsumerService, or VideoProducerService, this system occurs error. I am not sure what make this problem. However, I guess that modified ProcessManagerWin32 class occur this error. I will solve this problem soon.

I sincerely hope to REVIEW this document to integrate DV with Access Grid.

Thank you for reading this document.

