Developers’ Corner

This column will focus on developing shared applications for the Access Grid™ Toolkit version 2.

The AG team has developed a few sample shared applications, including a shared web browser and a shared presentation viewer. The shared web browser is available as an example application with AG2.0. The shared presentation tool has become—as of AG2.1—a supported part of the toolkit.
Basics of Shared Applications
The requirements of sharing an application include:
· store the current application state

· distribute state changes to the participants
The AG Toolkit provides support for shared applications via application objects that reside in Virtual Venues™. Application objects have two parts a SOAP interface, and an event channel which provides tight synchronization among the clients. The SOAP interface includes the following methods:
Join()

Registers the local client with the application object, returning a public id, private id pair. Only registered clients can call the other methods by providing the private id.
GetDataChannel(privateId)

Returns data necessary to connect to the event channel.
SetData(privateId,keyword,value)

Sets data in the application dictionary. Keywords are defined by the shared application.
GetData(privateId,keyword)

Gets data from the application dictionary, using ‘keyword’.

Leave(privateId)

Unregisters the local client from the application object.

An Example
The example for this column is a simplified shared text buffer. It is intended as a basis for understanding and building shared applications, not as a feature-rich shared application itself. It includes a GUI with a multi-line text field and a “Send” button. Each time the user presses the button, the entire text is updated for all other users in the session. Also, if a new user joins the session intermediately, his client will display the same text as the other users’ clients.
[image: image1.png]M SampleApp

of issues elating o collaborative work n distrbuted
envirormerts.

So how does this work? When the user presses the button, a “modifyText” event is sent on the event channel. The venue receives this event and distributes it to all other participants. The event includes the sender’s publicId and the entire contents of the text buffer.
eventClient.Send(Events.Event(

“modifyData”,

channelId,

(publicId, data)))
Clients will receive the event and update their GUI to display the new text.

Secondly, the application client sets this data in the application object in the venue. Given the application URL, these calls are made as follows:

appProxy.SetData(privateId,
“data”,

channelId,

(publicId, data))

With the current text stored in the application object, a client can join an ongoing session by retrieving the data:
appProxy.GetData(self.privateId,

“data”)

The client UI will be updated with the new text to reflect the same state as the other application clients.

Note: The code above is paraphrased to some extent, due to limited space. The full code of this example—all 141 lines—can be found online at:
http://www.mcs.anl.gov/fl/research/accessgrid/documentation/devcorner/2003-1.2.zip.

Also not discussed is how shared apps get integrated with the venue client. These details will be included in the upcoming AG2 Programmer’s Manual. Meanwhile, if you have any questions about developing shared applications for the AG, email the AG Development Team at ag-mcs@mcs.anl.gov.
