
AGTk-based Shared Movie 
Player

Robert Olson



The Problem

• Synchronized viewing of a movie file at 
multiple sites



Challenges

• Determination and definition of “session”
• Movie file distribution
• Synchronization of start/stop/change 

position



Sessions

• A single instance of a shared movie playing 
session

• State:
– Current movie being played
– Current position in the movie
– Current state (playing, paused, stopped, etc)



Sessions, cont.

• Session represented as an AGTk application 
object
– App obj holds a dictionary containing state, and 

an event channel for realtime communication



Session data

• currentMovieType
– Currently, only supports movies in the datastore

• currentMovieStore
– URL to the datastore holding the movie

• currentMovieFile
– Filename of the movie in the datastore

• state
– Current state (playing, stopped, etc)

• position
– Current position in the movie (in seconds)



File distribution

• Movie files placed in Venue datastore
• Session state used to retrieve current file
• Clients’ loading new file causes event to be 

distributed notifying clients of new file
• Clients load the files using the API in the

DataStoreClient module.



State Synchronization

• Venue event channel used to distribute state 
update messages:
– status_changed

• Emitted when a user starts or stops the movie

– new_movie
• Emitted when a user loads a new movie file

– position_changed
• Emitted when a user changes the position of a movie 

playback



Client Considerations

• On Windows, video rendered by embedded 
Windows Media Player

• Uses native media player controls (play, 
stop, set position)

• Complication: programmatically generated 
media player control generates local 
feedback that’s the same as manual control



Client, cont.

• Complexities 
of client state 
manipulation 
handled with an 
explicit state 
machine

def

WaitingLocal

LocalLoadMovie/
LoadMovieFile

Ready

Go

Ready
LocalLoadMovie/
EmitLoadMovie,
LoadMovieFile

Playing

PlayingW

RemotePlay/DoLocalPlay

LocalPlay
LocalPlay/
EmitPlay

LocalStop/
EmitStop



AG Integration
Shared Movie Player

State Machine Events

Media state changes

Local movie control

State Machine Actions

AG Interface

State Machine
def

WaitingLocal LocalLoadMovie/
LoadMovieFile

Ready

Go

Ready

LocalLoadMovie/

EmitLoadMovie,
LoadMovieFile

Playing

PlayingW

RemotePlay/DoLocalPlay
LocalPlay

LocalPlay/

EmitPlay

LocalStop/
EmitStop

Windows Media Player

Venue

Application Object

App Data Event
Channel

A
G

 E
ve

nt
s

D
at

a 
A

cc
es

s

M
ov

ie
 D

at
a

Data
Store



Distributed State

• Event channel used to distribute effects of user 
changes (Play, Stop, Load, etc)

• Potential for races, etc
– No global ordering of messages

• What effect does this have?
– Possible confusion if multiple people manipulate state 

at the same time
• Social protocols should help
• Full distributed control algorithms would help 

more, but require strong ordering semantics in 
communications



Membership

• Calculation of membership is approximate 
(see previous slide on event channel 
semantics)

• Used as advisory means: user feedback
• Mechanism: new events:

– client_join (on first joining)
– client_present (keepalive)
– client_leave (on exiting)



App startup

• Application object is 
created in the venue:



App startup, cont.

• Application developer writes application 
description file:
[application]
name = Shared Movie Viewer
mimetype = application/x-ag-movie-viewer
extension = agmovie
files = sharedmovie.bat
[commands]
Open = sharedmovie.bat %(venueUrl)s %(appUrl)s

• Defines the “Open” command on the shared 
movie item that…

• Invokes sharedmovie.bat with the venue’s SOAP 
URL and the app object’s SOAP URL



App startup, cont.

• My apps use a batchfile for startup:
cd C:\Program Files\Access Grid Toolkit Applications\Shared Movie 

Viewer
C:\Python22\\python.exe smc.py %1 %2 %3 %4 %5 %6 %7 %8 %9

• Registered with agpm.py:
agpm.py –f sharedmovie.app

• Wrapped up with an InnoSetup installer
• But I might be odd ☺
• Can distribute zipfiles of code which are installed directly 

via ‘agpm.py –z file.zip’



App startup, cont.

• App extracts URLs and retrieves 
information from venue and app object:
venueURL = sys.argv[1]
appURL = sys.argv[2]
datastore = 
DataStoreClient.GetVenueDataStore(venueURL)

app = Client.Handle(appURL).GetProxy()
publicId, privateId = app.Join()



What’s next?

• Streaming video support ?
• Tighter synchronization (avoid net-lag 

problems)
• Synchronized playback with Tiled Display 

movie players
• Linux support (mplayer? xanim?)


