
Certificate Repository Manual

Robert Olson

4th August 2003

olson@mcs.anl.gov

Abstract

A Certificate Repository manages a collection of certificates on behalf of a user.

Contents

1 Introduction 2

2 Certificate Management 2

3 Requirements 2

4 Repository Structure 2

5 Certificate Management Operations 3
5.1 Importing a new certificate. 3
5.2 Exporting a certificate. 4
5.3 Browsing certificates. 4
5.4 Creating Globus proxy certificates. 4
5.5 Default certificates . 4

6 Using the repository 4
6.1 Creating certificate requests. 5

7 AccessGrid.CertificateManager — Python certificate management tools 5
7.1 CertificateRepository Objects. 5
7.2 CertificateDescriptor Objects. 6
7.3 CertificateRequestDescriptor Objects. 7

Module Index 8

Index 9

1 Introduction

2 Certificate Management

In [the cert mgmt document] we discuss the requirements of the certificate management infrastructure in the AG. In
brief, the AG software expects there to be two “pools” of certificates: a set of user identity certificates, from which
Globus proxy certificates can be created; and a set of trusted CA certificates.

The usual operations on these pools of certificates are the lookup and creation of proxies from the identity certificates.
Less often, identity certificates will be imported and exported. Even less often, trusted CA certificates will be added
and removed.

An AG certificate manager will use a single certificate repository for both the identity and trusted CA certificates. The
two certificate types are distinguished using the metadata defined for each certificate. The metadata keyAG.CertType
will have the valueidentityfor identity certs, andca for trusted CA certs.

Since the Globus toolkit requires the trusted CA certs to reside in a flat directory with a defined naming structure
(that is different than that used by the certificate repository), the Globus trusted CA directory will be created from the
certificate repository each time a trusted CA certificate is added to or removed from the repository.

3 Requirements

The certificate repository component of the certificate management package provides mechanism for an application
to manage trusted CA and user or service identity certificates, as well as supporting the requesting of new certificates
and the creation of Globus proxy certificates.

The design philosophy behind the certificate repository is that it should be considered to be a fairly low-level tool.

This module defines classCertificateDescriptor to represent individual certificates. This wrapper class does
not provide an independent representation for the certificate: the fundamental description of the certificate is the stored
form of the certificate in the filesystem. Internally, the pyOpenSSL module is used to read the certificate from the
filesystem and cache OpenSSL data structures which describe the certificate; pyOpenSSL is then used to manipulate
these data structures to read the certificate.

4 Repository Structure

A certificate repository has the following structure in the filesystem:

<repo_root>/
metadata.db
certificates/<subject_hash>/

<issuer_serial_hash>/cert.pem
user_files/

requests/<modulus_hash>.pem
privatekeys/<modulus_hash>.pem

All certificates and requests for a given subject are stored in the directory<subject_hash> , where
<subject_hash> is the hex version of the MD5 digest of the DER form of the Subject of the certificate. The
actual certificateis stored in a subdirectory<issuer_serial_hash> ; this name is the hex version of the MD5
digest of the DER form of the issuer’s distinguished name concatenated with the serial number of the certificate. (To-

2 4 Repository Structure

gether,<subject_hash> and<issuer_serial_hash> uniquely identify a certificate). If desired, the user of
the repository can store files in a subdirectoryuser_files of the certificate’s directory.

Metadata for the repository is stored in a Berkeley database namedmetadata.db at the toplevel of the repository
hierarchy. Metadata for particular certificate and metadata key<metadata_key> is stored using this key into the
metadata:

cert|<subject_hash>|<issuer_serial_hash>|<metadata_key>

Metadata for a particular certificate request is stored here:

req|<subject_hash>|<modulus_hash>|<metadata_key>

If a certificate request is pending for a given subject, the request document is stored in the file
<modulus_hash>.req.pem , where<modulus_hash> is the hex version of the MD5 hash of the modulus
of the key used to sign certificate request.

The private keys for any certificate or certificate request are found in theprivatekeys directory, in files named
<modulus_hash> as defined above.

If a certificate has a valid Globus proxy certificate in existence, the proxy will be stored in the
<subject_hash>/<issuer_serial_hash> directory; they cannot be stored independently because the proxy
certificates do not have uniquely issued serial numbers.

Certificate metadata is stored using a Berkeley DB file. The metadata is for the use of applications of the certificate
store; as such, the namespace in the database must be managed. We define a simple hierarchical structure for this
naming. Database keys are sequences of strings with dots separating the layers in the hierarchy. The first portion of
the name is the application name; the rest of the hierarchy is defined by the application itself. The application name
System is reserved for the certificate management software itself.

5 Certificate Management Operations

We discuss various operations on a certificate repository and their effects on the repository.

5.1 Importing a new certificate

Certificates are added to the repository through the certificate import mechanism. Importation of a certificate follows
the following steps:

• The file containing the new certificate is identified, and the type of the file confirmed (PEM, PKCS12, raw DER,
etc).

• We determine if the certificate is an identity certificate (in which case it requires a private key as well, which
can either be included in the certificate file or specified as a separate file) or a trusted CA certificate.

• The format of the certificate is translated, if necessary, to be understood by the certificate management software.

• The certificate is loaded into a pyOpenSSL certificate object. Verification of the correctness of the certificate is
performed.

• The repository is checked to determine whether the certificate is already present. If not, the directory hierarchy
for the certificate is created and the certificate written to it.

3

If there is a private key, the private key is copied to the appropriate location as well.

The metadata for the certificate is initialized. The following entries are created:

– System.importDate

– System.certType

– System.originalSource

5.2 Exporting a certificate

A user can export a certificate for use in other applications.

5.3 Browsing certificates

The certificate repository itself does not support browsing; however, through its query mechanisms it can return to the
application the sets of certificates matching the appropriate critera for the browser.

5.4 Creating Globus proxy certificates

5.5 Default certificates

6 Using the repository

Applications make use of the certificate repository through its API. The primary interface is via the
CertificateRepository class; at application startup time the application creates an instance of the
CertificateRepository class, passing to the constructor the directory in which the repository should be found.
Unless the keyword argumentcreate = 1 is passed to the constructor, the repository must already exist. If it does
not exist, invocation of the constructor will raise theRepositoryNotPresent exception. If the repository direc-
tory is present, but somehow corrupted (or does not actually contain a certificate respository), the constructor will raise
theRepositoryCorrupt exception.

Note: The distinction between creating a new repository and opening an existing repository is designed in part to aid
in the bootstrapping problem wherein when a new certificate repository is to be created we want to perform an initial
import of certain certificates (e.g. the user’s Globus identity certificate, the trusted CA certificates from the default
Globus location).

An individual certificate is described by an instance of theCertificateDescriptor class. A certificate descrip-
tor provides methods to allow the user to query the certificate for its attributes (issuer, subject, etc), and to use as a
target for per-certificate operations in the repository.

For instance, to create a Globus proxy for a given DN, a user might write the following:

repo = CertificateRepository("/home/user/.repo")
descList = repo.FindCertificates("issuer", "O/...")
repo.CreateGlobusProxy(descList[0])

TheCertificateRepository class defines a number of lookup methods for finding certificates. These include

FindCertificate() Find the certificate with the given subject, issuer, and serial number.

FindCertificatesWith<Attr>() Returns all certificates which have the given <Attr> (subject, issuer, etc).

4 6 Using the repository

FindCertificatesWithMetadata() Returns all certificates with metadata matching the given value.

FindCertificates() Returns all certificates for which the given evaluation function returns true.

6.1 Creating certificate requests

The certificate repository provides the mechanism for easy creation of certificate requests. The application is respon-
sible for gathering the name/value pairs that make up the subject name of the request. For instance, to create a request
named “O=Grid, OU=Access Grid, OU = ANL, CN=Bob Olson” one might write the following:

nlist = [("O", "Grid"),("OU", "Access Grid"),
("OU", "ANL"),("CN", "Bob Olson")]

cdesc = repo.CreateCertificateRequest(nlist, "secretPhrase")
Now to write to a file to be mailed
reqText = cdesc.ExportPEM()
fh = open(‘‘out.pem’’, ‘‘w’’)
fh.write(reqText)
fh.close()

7 AccessGrid.CertificateManager — Python certificate manage-
ment tools

classCertificateRepository (directory)
A CertificateRepository instance holds a set of X.509 certificates, certificate requests, private keys,
and Globus signing policy definition files. It is instantiated with the directory in which these items are stored.

classCertificateDescriptor ()
A CertificateDescriptor instance describes a single certificate resident in a repository. Instances of
this class are not created by the application; rather, they are returned as a result of anImport operation on a
repository or from a query method.

classCertificateRequestDescriptor ()
A CertificateDescriptor instance describes a certificate request as kept in a repository. Instances of
this class are not created by the application.

7.1 CertificateRepository Objects

TheCertificateRepository class defines the following methods:

FindCertificatesWithSubject (str)
Retrieve all certificates that have a subject name ofstr.

FindCertificatesWithIssuer (str)
Retrieve all certificates that have a issuer name ofstr.

FindCertificatesWithMetadata (mdKey, mdValue)
Retrieve the certificates matching the givendn.

FindCertificates (predicate)
Invoke predicateon each certificate in the repository. Return the list of certificates for whichpredicate(cert)
returns true.

6.1 Creating certificate requests 5

GetAllCertificates ()
Retrieve a list of all certificates.

ImportCertificatePEM (cert, key = None)
Import a PEM-formatted certificate from filecert. If keyis not None,keyis the private key file forcert.

ImportCertificateDER (cert, key = None)
Import a DER-formatted certificate from filecert. If keyis not None,keyis the private key file forcert.

CreateCertificateRequest (nameEntries, passphrase, keyType = KEYTYPE_RSA, bits = 1024, messageDi-
gest = “md5”, extensions = None)

Create a new certificate request.

nameEntriesis a list of 2-tuples(key, value) where key is one of the standard distinguished name keys:

CN Common name

C Country name

L Locality name

ST State or province name

O Organization name

OU Organizational unit name

emailAddressEmail address

If passphraseis a string, it is used as the passphrase for the private key of the certificate request. If it is a Python
callable object, the string value that is returned from its invocation is used as the passphrase for the private key.
If passphraseis None, the private key will not be encrypted.

The keyTypeargument defines the type of key to be generated. Valid values areKEYTYPE_RSAand
KEYTYPE_DSA.

Thebitsdefines the size of the key.

ThemessageDigestargument defines the message digest to be used in signing the certificate request.

Theextensionsargument defines the X509 extensions to be used in teh creation of the certificate request. This
argument must be a list of 3-tuples(name, critical_flag, value). The namefield specifies the name of the
extension. Thecritical field should be 1 if the extension is critical, 0 otherwise. Thevaluefield is the value for
the extension.

If the extensionsargument isNone, the following extensions list will be assumed:

[
("nsCertType", 0, "client,server,objsign,email"),
("basicConstraints", 1, "CA:false")

]

This method returns aCertificateRequestDescriptor instance describing the new request.

7.2 CertificateDescriptor Objects

TheCertificateDescriptor class defines the following methods:

GetIssuer ()
Return the issuer of the certificate as a pyOpenSSL X509Name object.

GetSubject ()
Return the subject of the certificate as a pyOpenSSL X509Name object.

IsValid ()
Returns true if the certificate is valid.

6 7 AccessGrid.CertificateManager — Python certificate management tools

GetMetadata (key)
Return the metadata associated withkey.

SetMetadata (key, value)
Set the metadata associated withkeyto bevalue.

GetFilePath (filename)
Determine the pathname the application should use in associating the givenfilenamewith this certificate.

7.3 CertificateRequestDescriptor Objects

TheCertificateRequestDescriptor class defines the following methods:

GetSubject ()
Returns the subject name in this certificate request.

GetModulus ()
Returns the public-key modulus of this certifidate request.

GetModulusHash ()
Returns the MD5 has of the public-key modululs of this certifidate request.

7.3 CertificateRequestDescriptor Objects 7

Module Index
A
AccessGrid.CertificateManager , 5

8

Index
A
AccessGrid.CertificateManager (module),

5

C
CA certificate, 3
CertificateDescriptor (class in Access-

Grid.CertificateManager), 5
CertificateRepository (class in Access-

Grid.CertificateManager), 5
CertificateRequestDescriptor (class in

AccessGrid.CertificateManager), 5
CreateCertificateRequest() (Certifi-

cateRequestDescriptor method), 6
critical extension, 6

D
DER, 3

E
extension, 6

F
FindCertificates() (CertificateRequestDe-

scriptor method), 5
FindCertificatesWithIssuer() (Certifi-

cateRequestDescriptor method), 5
FindCertificatesWithMetadata() (Certifi-

cateRequestDescriptor method), 5
FindCertificatesWithSubject() (Certifi-

cateRequestDescriptor method), 5

G
GetAllCertificates() (CertificateRequestDe-

scriptor method), 6
GetFilePath() (CertificateRequestDescriptor

method), 7
GetIssuer() (CertificateRequestDescriptor

method), 6
GetMetadata() (CertificateRequestDescriptor

method), 7
GetModulus() (CertificateRequestDescriptor

method), 7
GetModulusHash() (CertificateRequestDescriptor

method), 7
GetSubject() (CertificateRequestDescriptor

method), 6, 7

I
identity certificate, 3

ImportCertificateDER() (CertificateRequest-
Descriptor method), 6

ImportCertificatePEM() (CertificateRequest-
Descriptor method), 6

IsValid() (CertificateRequestDescriptor method),
6

P
PEM, 3
PKCS12, 3
private key, 3

S
SetMetadata() (CertificateRequestDescriptor

method), 7

T
trusted CA certificate, 3

9

	1 Introduction
	2 Certificate Management
	3 Requirements
	4 Repository Structure
	5 Certificate Management Operations
	5.1 Importing a new certificate
	5.2 Exporting a certificate
	5.3 Browsing certificates
	5.4 Creating Globus proxy certificates
	5.5 Default certificates

	6 Using the repository
	6.1 Creating certificate requests

	7 AccessGrid.CertificateManager --- Python certificate management tools
	7.1 CertificateRepository Objects
	7.2 CertificateDescriptor Objects
	7.3 CertificateRequestDescriptor Objects

	Module Index
	Index

