Unicast Falback Design

Tom Uram

July 2003

Introduction

This document describes a design for Virtual Venues to provide unicast support to clients without multicast, either because it is unavailable or has failed.
The solution provides a bridge server with a SOAP interface, into which a venue can call to create bridges as needed. The venue will maintain a list of bridge users, and will destroy the bridge when it’s no longer being used.
Motivation

The AccessGrid relies heavily on working multicast for transmitting audio and video among participants. This reliance suffers from two factors:

· Not all sites have multicast available

· Multicast is not sufficiently reliable

To this end, we define mechanisms for a client to request that a venue create a unicast bridge, by which these issues can be overcome.

Requirements

Bridge multicast traffic to a unicast address
Notify clients if the bridge fails

Allow the bridge server to reside on a separate machine
Bridging a large amount of multicast traffic could overload the venues server, so the venue should be able to start the bridge on a different machine.
In the future, this will enable users in a venue (or network service providers) to provide bridges for a venue.
Clients of the bridge server should be able to start and stop bridges as needed
The venue should be able to start a bridge when a user indicates a need for it. Scalability requires that the venue also be able to terminate the bridge, specifically when the last bridge user leaves the venue.

Assumptions

Bridging is a manual operation; no effort is made (yet) to detect multicast failure and automatically bridge
Bridging is not targeted at restoring full connectivity to the users in a multicast group
In this case, the venue would examine the connectivity of the venue participants and utilize bridges intelligently to ensure full connectivity. This is not being considered because it requires knowledge about the connectivity of the individuals in the multicast group. To equip the venue with this data, each client would be required to run network monitoring software and send this status to the venue. This is outside of the scope of the current solution, but is planned as a future enhancement, so appropriate accommodations will be made where possible. Note also the firewall considerations that would be required of clients, assuming that clients are bridge candidates.

Decomposition

BridgeFactory
The BridgeFactory creates and manages Bridge objects. It exposes a web services interface for clients to create and destroy Bridges.
Clients can provide their URL to be notified if the bridge aborts. In the case of an abort, the BridgeAbortCB method will be called on the client (in this case, the venue) at the specified URL.

Attributes

bridges : Bridge {} (keyed on pid)

Methods
CreateBridge(maddr, mport, ttl, clientUrl) : Bridge

DestroyBridge(id) : None
Bridge
A Bridge receives multicast traffic and republishes it on a unicast address/port. Clients connect to the unicast address/port to receive the data.
Attributes

id : string
multicast address : string
multicast port : int
multicast ttl : int
unicast address : string
unicast port : int
Venue
The Venue receives the request to bridge a connection and calls the bridge factory to do so.

Attributes

bridges : Bridge []

(the venue will store a list of bridge users with each bridge)

Methods

GetUnicastStreams(StreamDescription []) : StreamDescription []
GetMulticastStreams(StreamDescription []) : StreamDescription []

VenueClient

The VenueClient will insert a multicast capability in the ClientProfile when entering the venue. In this case, streams returned from the Enter call will contain unicast addresses.

The VenueClient will also include an option to make the bridging request manually. The request will include the current StreamDescriptions, and return StreamDescriptions with the bridge addresses, which can be passed to the node service to configure services.

The client can also choose to stop using the bridge, in which case it should revert to multicast.
Functionality
User enters Venue with no multicast capability

From the streams identified for the user (based on the user’s media capabilities), existing bridges will be identified. If new bridges are required, they will be started.

StreamDescriptions with unicast addresses will be included in the venue state returned to the user by the call to Venue.Enter.
User requests connection to a Bridge explicitly
The User passes current list of stream descriptions to Venue. The Venue identifies existing bridges, creates new bridges as needed, and returns a list of stream descriptions containing the unicast addresses.

The VenueClient passes the list of Stream Descriptions to the Node Service, which sends individual Stream Descriptions to the respective service based on the media type.

User terminates connection to Bridge
A User can return to multicast connectivity by calling Venue.GetMulticastStreams, passing the current list of StreamDescriptions. The Venue returns the multicast counterpart to the unicast streams passed in, and the VenueClient passes these to the NodeService as usual.

The user is removed from the list of bridged users. When the last bridged user abandons the bridge, the Venue destroys it (the Venue maintains the list of bridged users).

Notes
Fault Tolerance
The venue should be notified if the bridge aborts (see note below). It should be able to notify venue clients if their bridge fails
Republishing to multicast
QuickBridge can republish traffic coming into the unicast port to local multicast. We should consider having clients run quickbridge (as a node service) and media tools won’t have to change addresses (thereby avoiding a restart). The ttl should be set appropriately to avoid network feedback.

Currently, QuickBridge will abort if it detects multicast traffic from a known unicast peer. If multiple users are connected to a bridge when this occurs for one user, all users will lose their bridge. That’s okay for the user who has regained multicast, but not for the remaining users. QuickBridge should, in this case, be modified to just disconnect the offending user.
Authorization
Authorization issues should be included, and will become necessary when remote bridge servers are used. For now, like the rest of the AG2 code, the bridge server will remain open.

Bridge per Venue?
We should probably identify a bridge server for a VenueServer, and allow individual venues to identify their own bridge server
�The method names should be reconsidered.

