VenueClient Restructure

[image: image1.png]VenuProny Evenicliont

T 1

“AccassGrid_venuacliant

ccas Grid_venuaClnliEaze

B Ve Clant

Figure 1

Low level components

VenueProxy

EventClient

AccessGrid.VenueClient

Primary VenueClient functionality.

Holds all VenueClient state.

Holds lower level components such as VenueProxy and EventClient.

Bin.VenueClient (UI)

The GUI for the VenueClient.

Contains an AccessGrid.VenueClient.

If necessary, inherits some GUI functionality from AccessGrid.VenueClientUIBase.

AccessGrid.VenueClientUIBase

If there is enough UI code that could be reused in different venueclients, this class will be a superclass to Bin.VenueClient to avoid code duplication where possible.

The VenueClient restructuring should not introduce functional or visual changes.

Additional VenueClients such as a command line VenueClient can fit in at the same level as Bin.VenueClient.

Applications and Services

Applications and services will each have their own classes on the same level as AccessGrid.VenueClient. There is more design involved in creating them so the VenueClient will be worked on first -- it only involves restructuring the current code.

Purpose of changes:

· Completely separate GUI code from VenueClient functions and state.

· Prepare for addition of designs for applications and services.

· Reevaluate design of VenueClient. After original design and implementation, additions have been needed and were added by multiple developers.

· Provide a place in the design for other components such as a command-line VenueClient. (possible side-effect, a template for creating custom VenueClients)

[image: image2.png]enusprany

EuantCiant

T 1

“AccassGrid_venuacliant

BV Chantit

[image: image3.png]enusprany Evenicliont

T 1

“AccassGrid_venuacliant

BV Chantit

Figures 2 and 3.

Pros and Cons

A) (figure 2) bin.VenueClientUI contains an instance of AccessGrid.VenueClient

Pros

· Since bin.VenueClientUI contains only UI functionality, the "has a" relationship fits the design: the GUI has a VenueClient, but isn't actually a VenueClient (different perspective below). Another class that contains the GUI and VenueClient might work just as well.

· It allows more flexibility. If a developer wanted other components (separate logger, performance analyzer, etc.) to subscribe to events such as Enter, they could.

· It provides more separation between UI and VenueClient.

· If we wanted to override the VenueClient with modified functionality in a new class, having no functions overridden would make it easier to know that the new functions are not affected by the UI.

· If we want to create a slightly different UI with the same VenueClient functionality, we would have little worry of the new UI affecting VenueClient internals since it can't override the functions.

Cons

· An extra pointer to the bin.VenueClient (and the code to use it) is required in AccessGrid.VenueClient since the UI has to pass events back to the UI. (more new code, more debugging)

· Adding a new client involves implementing all callback methods instead of just overriding necessary methods (perhaps a base class that does this could be provided or the events could be passed through as a parameter to a single function).

· Involves more change to current code than other solutions (should only matter if both solutions are equally optimal)

B) (figure 3) bin.VenueClientUI inherits AccessGrid.VenueClient

Pros

· Although bin.VenueClientUI contains only UI specific code, we often view it as a complete VenueClient. In this way it can have an "is a" relationship (inheritance).

· All interface functions do not have to be written when writing a new UI (they are inherited).

· Extra pointer to AccessGrid.VenueClient and code to communicate with it are not required since functions have been inherited.

· Fewer changes to existing code

Cons

· If other classes would like to use AccessGrid.VenueClient, they would have to use inheritance even if they would rather just contain a VenueClient -- perhaps there aren't many cases where this would matter.

· If we make it common for the UI to override the VenueClient's functions, the UI is not fully separated from the internal VenueClient and changes to the UI are more likely to affect VenueClient internal operations.

Below is a summary sequence diagram from the proposed method A. In order to understand the VenueClient a bit more and make sure major problems weren't overlooked, I also did a quick working implementation.

[image: image4.png]bin.VenueClentULVenueClientFrame.

‘AccessGrig VenueClent

bin.VenueClenUL Ertervenue

Other Possible Event Listener

enueClientfjame : createAddres s

selfVenueClient Entervenued

Connect

Server Calls

Figure 4

