Suggestions for data storage improvements
Solution1

Move management of DataDescriptions to the DataStore.

If the DataStore is responsible for managing the list of DataDescriptions, persistence can be controlled by the DataStore and we would avoid redundant code used to manage DataDescriptions used by both VenueClient and Venue.
Remove the callback class

If we move the list of DataDescriptions from the Venue to the DataStore, Venue methods used to manage DataDescriptions such as AddData, GetData, and UpdataData should be moved from Venue to DataStore. Current DataStore code can then simply change venue callbacks (or VenueClient callbacks for personal data) to internal calls.
Use the EventClient in the DataStore

The AddData, GetData, and UpdateData venue methods are responsible for sending events to clients connected to the venue. If we move those methods to the DataStore an EventClient should be used in the DataStore to distribute appropriate events to clients. The EventClient would send events but not register callbacks.

Use the DataStore as an Object

We might want to use the DataStore consistently as an object with interface methods. If the DataStore would be used as an object, we can have a Venue.GetDataStore() method and then call DataStore methods directly, and the Venue.GetUploadDescriptor method can disappear. Then we don’t need to care about which transfer engine or url is used when uploading/downloading, that can be handled internally in the DataStore methods. (This might just be my preference and involves more changes than we would like, I just like the idea of always calling a datastore object’s methods as we are for DeleteFiles and UploadLocalFiles).
SHOULD INTERFACE METHODS BE EXPOSED USING SOAP?

Suggested methods for the DataStore:

void UploadFiles(dn, fileList, progressbar)
void DownloadFiles(dn, localPathName, DataDescriptionList, progressbar)

void DeleteFiles(DataDescriptionList) (SOAP?)
[DataDescription] GetData() (SOAP?)
void UploadLocalFiles(dn, publicId, fileList, progressbar)

Sequence Diagrams
Venue data

[image: image1.emf]VenueClientUi VenueClient EventClient

UploadFiles(dn, fileList, progressbar)

AddDataEvent(dataDescription)

Venue

AddDataEvent(dataDescription)

DataStore

UpdateData(Data

Description)

DistributeEvent(uniqueId, event.UPDATE_DATA)

UpdateDataEvent(dataDescription)

UpdateDataEvent(dataDescription)

AddData(Data

Description)

DistributeEvent(uniqueId, event.ADD_DATA)

If we are using dataStore

methods we don’t need an

upload url as argument. The

datastore can also check

internally if it should uses GSI or

HTTP Upload

Events are sent from dataStore

instead of Venue. Internal

methods (AddData,

UpdateData), copied from the

venue, can be added and used

for this purpose in the DataStore.

GetDataStore()

By returning a datastore object

from the venue instead of a url

and use datastore methods

instead of file functions we can

extend the datastore interface

with more methods as needed

without changing the venue

interface.

Figure 1 Upload files to venue’s DataStore

[image: image2.emf]VenueClient

DownloadFiles(dn, localPathName, DataDescriptonList, progressbar)

Venue DataStore

GetDataStore()

Send a DataDescription instead

of size and checksum since the

description includes that already

Figure 2 Download files from venue’s DataStore

[image: image3.emf]VenueClientUi VenueClient EventClient

DeleteFiles(dataDescriptionLis

t)

RemoveDataEvent(data

Description)

Venue

RemoveDataEvent(data

Description)

DataStore

RemoveData(Data

Description)

DistributeEvent(uniqueId, event.REMOVE_DATA)

GetDataStore()

Figure 3 Remove files from venue's DataStore

Personal data

[image: image4.emf]VenueClient EventClient

GetDataStore()

Venue soapPROXY

Enter(self.profile)

DataStore

When you initially enter a venue,

a DataDescription list including

personal data have to be

retrieved from all participants

already in the venue. This

should probably be done in a

thread not to introduce too much

delay in the enter action

GetData()

AddUserEvent(clientProfile)

EventService

DistributeEvent(uniqueId, event.ENTER

)

GetDataStore()

GetData()

When an AddUserEvent is

received, we need to get the new

users personal data

EnterVenue(url)

Figure 4 Handling personal data when new participant enters venue

[image: image5.emf]VenueClientUi

UploadLocalFiles(dn, publicId, fileList, progressbar)

DataStore

AddData(DataDescription)

EventClient

DistributeEvent(uniqueId, event.ADD_DATA)

VenueClient

AddData(Data

Description)

AddData(DataDescription)

The datastore is responsible for

distributing the event instead of

the venue. DataDescriptions

would be stored in the datastore

instead of in the venue which

would make personal data

independent from venue data

(allowing personal data and

venue data to have the same

name)

Figure 5 Add local files to personal DataStore located on the same computer

Solution 2

Create a class, DataDescriptionContainer, which manages a list of DataDescriptions. When the DataStore is created, the DataDescriptionContainer object would be sent in the callbackClass argument of the DataStore.
Motivation:

· Currently, two DataStore objects are used; one for personal data and one for venue data. A class that contains a DataStore object has to keep track of a DataDescription list, thus, duplicated lists need to be managed for each class having a DataStore. Each class that has a DataDescription list consequently need to make sure data also is persistent. By using a DataDescriptionContainer the duplicated code can be avoided for data description management and data persistence.

· Building a separate object, DataDescriptionContainer, instead of including the DataDescription list in the DataStore, makes the DataStore class independent of meta-data. The class can be extended later if needed and unnecessary errors that might occur when changing the DataStore class are also avoided.
· By not storing personal data in the venue, personal data is allowed to be named the same as venue data.
Suggested Methods for DataDescriptionContainer

void AddData(DataDescription)

void UpdateData(DataDescription)

void GetData(fileName)

string AsINIBlock()

DataDescription[] GetDataDescriptions()

Sequence Diagrams

Upload Venue Data
The VenueClient uses DataStore.UploadFiles, as shown in Figure 6, to upload a file to the venue. The DataStore calls the DataDescriptionContainer class, which adds a DataDescription to its list. Then, the Venue is notified and an event is sent to all clients connected to the venue. The only thing that the Venue methods AddData and UpdateData are responsible for is distributing events.

[image: image6.emf]VenueClientUi VenueClient EventClient

UploadFiles(dn, fileList, progressbar)

AddDataEvent

(dataDescription)

Venue DataStore

UpdateData

(dataDescription)

DistributeEvent(uniqueId,

event.UPDATE_DATA)

AddData

(dataDescription)

DistributeEvent(uniqueId,

event.ADD_DATA)

AddDataEvent

(dataDescription)

UpdateDataEvent

(dataDescription)

DataStore

Description

Container

UpdateDataEvent

(dataDescription)

AddData

(dataDescr

i

pt

i

on)

Upd

ateData

(dataDe

scription

)

GetData

(dataDescription)

Figure 6 Upload data to venue

Download Venue Data
Same solution as currently implemented.

[image: image7.emf]VenueClient

DownloadFiles(url, localPathName,

size, checksum, progressbar)

Venue DataStore

Figure 7 Download venue data

Upload Personal Data

The VenueClient calls DataStore.UploadLocalFiles, which uses the DataStoreDescriptionContainer’s AddData method. The event is sent from the VenueClient and not, as currently implemented, from the Venue.

[image: image8.emf]VenueClientUi

UploadLocalFiles(dn, publicId, fileList, progressbar)

DataStore

AddData(DataDescription)

EventClient

DistributeEvent

(uniqueId, event.ADD_DATA)

VenueClient

AddData

(dataDescription)

AddData(DataDescription)

DataStore

Description

Container

AddData

(dataDescription)

GetData

(dataDescription)

Figure 8 Upload local file to personal DataStore
New User Enters the Venue

Personal DataDescriptions are no longer available in the Venue and each user now has to query other participants for their data. Each participant therefore has to expose a SOAP method returning its list of DataDescriptions.
Scenario 1 - I enter the venue:

1. I enter the venue

2. The venue distributes an EnterVenueEvent to clients (including me)
3. Distribute an AddDataEvent for all your personal data
4. Get personal data from all participants currently in the venue (ignore your own)
(* A user might exit the venue while I am trying to get his data which would result in a SOAP exception (try-except would do to catch the error)
(* A user might remove a personal file and distribute a RemoveDataEvent while I am trying to get his personal data. If this event is received before I have fetched personal data from that participant, the UI will not be coherent. This can be solved by using locks around the data fetch statement and the event methods)
5. Receive EnterEvent for me.
6. Add your own personal data (not using SOAP) if the clientProfile received from the EnterEvent is my profile.
Scenario 2 - Somebody else enters the venue:

1. Receive an EnterEvent

2. Add user to UI

3. Receive AddDataEvent for the new participants personal data

[image: image9.emf]VenueClient EventClient

GetPersonalData()

Venue

soapPROXY

for

VenueClient

Enter(self.profile)

DataStore

When you initially enter a venue,

a DataDescription list including

personal data have to be

retrieved from all participants

already in the venue. This

should probably be done in a

thread not to introduce too much

delay in the enter action

AddUserEvent(clientProfile)

EventService

DistributeEvent(uniqueId, event.ENTER)

GetPersonalData()

When an AddUserEvent is

received, we need to get the new

users personal data

EnterVenue(url)

DataStore

Description

Container

GetData

Descriptions()

GetData

Descriptions()

GetPersonalData returns a list of DataDescriptions

GetPersonalData returns a list of DataDescriptions

Figure 9 New user enters the venue
_1116849809.vsd
�

�

�

�

�

�

VenueClientUi�

VenueClient�

EventClient�

�

�

�

UploadFiles(dn, fileList, progressbar)�

GetDataStore()�

AddDataEvent(dataDescription)�

�

Venue�

DistributeEvent(uniqueId, event.ADD_DATA)�

�

AddDataEvent(dataDescription)�

DataStore�

�

UpdateData(Data
Description)�

DistributeEvent(uniqueId, event.UPDATE_DATA)�

�

UpdateDataEvent(dataDescription)�

�

UpdateDataEvent(dataDescription)�

AddData(Data
Description)�

�

If we are using dataStore methods we don�t need an upload url as argument. The datastore can also check internally if it should uses GSI or HTTP Upload�

�

Events are sent from dataStore instead of Venue. Internal methods (AddData, UpdateData), copied from the venue, can be added and used for this purpose in the DataStore. �

�

�

By returning a datastore object from the venue instead of a url and use datastore methods instead of file functions we can extend the datastore interface with more methods as needed without changing the venue interface.�

_1117457409.vsd
�

�

�

�

�

VenueClientUi�

�

UploadLocalFiles(dn, publicId, fileList, progressbar)�

DataStore�

AddData(DataDescription)�

EventClient�

�

DistributeEvent
(uniqueId, event.ADD_DATA)�

VenueClient�

�

AddData
(dataDescription)�

AddData
(dataDescription)�

GetData
(dataDescription)�

AddData(DataDescription)�

DataStore
Description
Container�

�

_1117457472.vsd
�

�

�

�

�

VenueClientUi�

VenueClient�

EventClient�

�

�

�

UploadFiles(dn, fileList, progressbar)�

AddDataEvent
(dataDescription)�

Venue�

UpdateDataEvent
(dataDescription)�

AddDataEvent
(dataDescription)�

DataStore�

�

UpdateData
(dataDescription)�

DistributeEvent(uniqueId, event.UPDATE_DATA)�

AddData
(dataDescription)�

UpdateData
(dataDescription)�

AddData
(dataDescription)�

DistributeEvent(uniqueId, event.ADD_DATA)�

DataStore
Description
Container�

�

UpdateDataEvent
(dataDescription)�

GetData
(dataDescription)�

_1117457925.vsd
�

�

�

�

�

�

VenueClient�

EventClient�

�

�

GetPersonalData()�

Venue�

soapPROXY for VenueClient�

�

Enter(self.profile)�

DataStore�

When you initially enter a venue, a DataDescription list including personal data have to be retrieved from all participants already in the venue. This should probably be done in a thread not to introduce too much delay in the enter action�

�

AddUserEvent(clientProfile)�

EventService�

DistributeEvent(uniqueId, event.ENTER)�

GetPersonalData()�

When an AddUserEvent is received, we need to get the new users personal data�

�

EnterVenue(url)�

�

DataStore
Description
Container�

�

GetData
Descriptions()�

GetData
Descriptions()�

GetPersonalData returns a list of DataDescriptions�

GetPersonalData returns a list of DataDescriptions�

_1117457391.vsd
�

�

�

�

�

VenueClient�

�

DownloadFiles(url, localPathName,
size, checksum, progressbar)�

Venue�

DataStore�

�

_1116849284.vsd
�

�

�

�

�

VenueClientUi�

VenueClient�

EventClient�

�

�

�

DeleteFiles(dataDescriptionList)�

RemoveDataEvent(data
Description)�

�

�

�

�

�

Venue�

�

�

RemoveDataEvent(data
Description)�

DataStore�

�

RemoveData(Data
Description)�

�

DistributeEvent(uniqueId, event.REMOVE_DATA)�

GetDataStore()�

_1116849383.vsd
�

�

�

�

�

�

VenueClientUi�

�

UploadLocalFiles(dn, publicId, fileList, progressbar)�

AddData(DataDescription)�

DataStore�

AddData(DataDescription)�

EventClient�

�

DistributeEvent(uniqueId, event.ADD_DATA)�

VenueClient�

�

AddData(Data
Description)�

�

The datastore is responsible for distributing the event instead of the venue. DataDescriptions would be stored in the datastore instead of in the venue which would make personal data independent from venue data (allowing personal data and venue data to have the same name)�

�

_1116849193.vsd
�

�

�

�

�

�

VenueClient�

�

DownloadFiles(dn, localPathName, DataDescriptonList, progressbar)�

Venue�

DataStore�

�

Send a DataDescription instead of size and checksum since the description includes that already�

GetDataStore()�

�

_1116845951.vsd
�

�

�

�

�

�

GetData()�

GetDataStore()�

GetData()�

VenueClient�

EventClient�

�

�

GetDataStore()�

�

Venue�

soapPROXY�

�

When an AddUserEvent is received, we need to get the new users personal data�

�

When you initially enter a venue, a DataDescription list including personal data have to be retrieved from all participants already in the venue. This should probably be done in a thread not to introduce too much delay in the enter action�

AddUserEvent(clientProfile)�

EventService�

DistributeEvent(uniqueId, event.ENTER)�

Enter(self.profile)�

DataStore�

EnterVenue(url)�

�

