Application using TerraServer
The Microsoft TerraServer contains 3.3 tera-bytes of high resolution aerial images and maps over the United States produced by the U.S. Geological Survey (USGS). The images are freely available to download and re-distribute. The application would use the TerraServer web service interface to query the image database.
TerraServer: http://terraserver.microsoft.com
Web Service API:

http://terraserver.microsoft.com/about.aspx?n=AboutTerraServiceAPI

WSDL locations:
http://terraserver-usa.com/terraservice.asmx

http://terraserver-usa.com/landmarkservice.asmx
Technology Decisions

In order to use the application for AGTk 2.0, the application should be implemented in python. wxPython will be used for user interface development.
Use Cases
AG2.0:

A user opens the application that uses the TerraServer service.

Stand-alone application:
Different possibilities for users to locate an image:
Enter street address -- high priority

Select longitude and latitude – medium priority
View landmark – medium priority
Click on a coverage map – low priority
Actions performed on an image:
Select real world aerial image -- high priority
Select topo map -- high priority
Select image width and height – medium priority
Zoom in or out to change image resolution – medium priority
Pan image (right-left-up-down) – medium priority
Open Issues
1. Do we want this application to be able to run on a tiled display or just on one computer? I.e. would we want the ability to tile images together or is fetching one image enough functionality?
To enable the program to run on a tiled display we need to separate the control panel from the image/map panel into two applications. The control panel would get a coordinate input from the user and then send it to the image/map panel. If we want to use a tiled display, the communication need to be made using for example xmlrpc/SOAP since the image/map panel will be running on separate computers from the control panel.

To tile images together, we need to know how many tiles the display is using and recalculate the coordinates received from the control panel according to the tiled display configuration file. When just one image/map panel is running, the case for non-tiled display applications, the configuration file could simply be ignored. This could be the default running mode.
We could also use a program that just takes the image/map panel and redirects it to the tiled display, but that would not give us highest possible resolution.
Options:
· Create a program that has control panel and map/image panel in the same application to run on one computer. We would not have to think about how to separate and communicate with components and how to tile images together based on coordinates and configuration files.

· Separate control panel and map/image panel and use some sort of communication mechanism between components to enable the application to run on tiled displays. Use a separate program to just show the map/image panel on the display as it would be a big screen without using the configuration file or coordinate calculations.

· Separate control panel and map/image panel and use some sort of communication mechanism between components to enable the application to run on tiled displays. Use the configuration file to coordinate one map/image panel for each machine in the tiled display. For the simple one image/map panel case for single machine use, ignore configuration files and coordinate recalculations.

· Separate control panel and map/image panel and use some sort of communication mechanism between components to enable the application to run on tiled displays. Use the configuration file to coordinate one map/image panel for each machine in the tiled display. For the simple one image/map panel case for single machine use, ignore configuration files and coordinate recalculations. Also, figure out how to ignore the communication mechanism between control panel and map/image panel when the application is running on just one computer.
2. How should we incorporate this application to the AG2.0 toolkit?
Is this a shared application or a shared service? Could we say that the TerraServer is the shared service and this is the application we are using? Would that mean we only have to add it as an application?
3. Should this be a shared application/service?
Should the application use an event channel so users can browse images/maps simultaneously? (You could actually do that already if you use the shared browser on the teraserver web site).
4. Does a toolkit exist that helps building SOAP clients from a WSDL description, like gSOAP for c/c++?

Found two interesting toolkits:

· SOAP.py – http://sourceforge.net/projects/pywebsvcs
Both for client and server development

· SOAPy – http://sourceforge.net/projects/soapy
Just for client development

Specifically mentioned, on their web site, support of SDL to power Microsoft’s TerraService!!!
