Suggestions for data storage improvements
Move management of DataDescriptions to the DataStore.

If the DataStore is responsible for managing the list of DataDescriptions, persistence can be controlled by the DataStore and we would avoid redundant code used to manage DataDescriptions used by both VenueClient and Venue.
Remove the callback class

If we move the list of DataDescriptions from the Venue to the DataStore, Venue methods used to manage DataDescriptions such as AddData, GetData, and UpdataData should be moved from Venue to DataStore. Current DataStore code can then simply change venue callbacks (or VenueClient callbacks for personal data) to internal calls.
Use the EventClient in the DataStore

The AddData, GetData, and UpdateData venue methods are responsible for sending events to clients connected to the venue. If we move those methods to the DataStore an EventClient should be used in the DataStore to distribute appropriate events to clients. The EventClient would send events but not register callbacks.

Use the DataStore as an Object

We might want to use the DataStore consistently as an object with interface methods. If the DataStore would be used as an object, we can have a Venue.GetDataStore() method and then call DataStore methods directly, and the Venue.GetUploadDescriptor method can disappear. Then we don’t need to care about which transfer engine or url is used when uploading/downloading, that can be handled internally in the DataStore methods. (This might just be my preference and involves more changes than we would like, I just like the idea of always calling a datastore object’s methods as we are for DeleteFiles and UploadLocalFiles).
SHOULD INTERFACE METHODS BE EXPOSED USING SOAP?

Suggested methods for the DataStore:

void UploadFiles(dn, fileList, progressbar)
void DownloadFiles(dn, localPathName, DataDescriptionList, progressbar)

void DeleteFiles(DataDescriptionList) (SOAP?)
[DataDescription] GetData() (SOAP?)
void UploadLocalFiles(dn, publicId, fileList, progressbar)

Sequence Diagrams
Venue data

[image: image1.emf]VenueClientUi VenueClient EventClient

UploadFiles(dn, fileList, progressbar)

AddDataEvent(dataDescription)

Venue

AddDataEvent(dataDescription)

DataStore

UpdateData(Data

Description)

DistributeEvent(uniqueId, event.UPDATE_DATA)

UpdateDataEvent(dataDescription)

UpdateDataEvent(dataDescription)

AddData(Data

Description)

DistributeEvent(uniqueId, event.ADD_DATA)

If we are using dataStore

methods we don’t need an

upload url as argument. The

datastore can also check

internally if it should uses GSI or

HTTP Upload

Events are sent from dataStore

instead of Venue. Internal

methods (AddData,

UpdateData), copied from the

venue, can be added and used

for this purpose in the DataStore.

GetDataStore()

By returning a datastore object

from the venue instead of a url

and use datastore methods

instead of file functions we can

extend the datastore interface

with more methods as needed

without changing the venue

interface.

Figure 1 Upload files to venue’s DataStore

[image: image2.emf]VenueClient

DownloadFiles(dn, localPathName, DataDescriptonList, progressbar)

Venue DataStore

GetDataStore()

Send a DataDescription instead

of size and checksum since the

description includes that already

Figure 2 Download files from venue’s DataStore

[image: image3.emf]VenueClientUi VenueClient EventClient

DeleteFiles(dataDescriptionLis

t)

RemoveDataEvent(data

Description)

Venue

RemoveDataEvent(data

Description)

DataStore

RemoveData(Data

Description)

DistributeEvent(uniqueId, event.REMOVE_DATA)

GetDataStore()

Figure 3 Remove files from venue's DataStore

Personal data

[image: image4.emf]VenueClient EventClient

GetDataStore()

Venue soapPROXY

Enter(self.profile)

DataStore

When you initially enter a venue,

a DataDescription list including

personal data have to be

retrieved from all participants

already in the venue. This

should probably be done in a

thread not to introduce too much

delay in the enter action

GetData()

AddUserEvent(clientProfile)

EventService

DistributeEvent(uniqueId, event.ENTER

)

GetDataStore()

GetData()

When an AddUserEvent is

received, we need to get the new

users personal data

EnterVenue(url)

Figure 4 Handling personal data when new participant enters venue

[image: image5.emf]VenueClientUi

UploadLocalFiles(dn, publicId, fileList, progressbar)

DataStore

AddData(DataDescription)

EventClient

DistributeEvent(uniqueId, event.ADD_DATA)

VenueClient

AddData(Data

Description)

AddData(DataDescription)

The datastore is responsible for

distributing the event instead of

the venue. DataDescriptions

would be stored in the datastore

instead of in the venue which

would make personal data

independent from venue data

(allowing personal data and

venue data to have the same

name)

Figure 5 Add local files to personal DataStore located on the same computer
_1116849284.vsd
�

�

�

�

�

VenueClientUi�

VenueClient�

EventClient�

�

�

�

DeleteFiles(dataDescriptionList)�

RemoveDataEvent(data
Description)�

�

�

�

�

�

Venue�

�

�

RemoveDataEvent(data
Description)�

DataStore�

�

RemoveData(Data
Description)�

�

DistributeEvent(uniqueId, event.REMOVE_DATA)�

GetDataStore()�

_1116849809.vsd
�

�

�

�

�

�

VenueClientUi�

VenueClient�

EventClient�

�

�

�

UploadFiles(dn, fileList, progressbar)�

GetDataStore()�

AddDataEvent(dataDescription)�

�

Venue�

DistributeEvent(uniqueId, event.ADD_DATA)�

�

AddDataEvent(dataDescription)�

DataStore�

�

UpdateData(Data
Description)�

DistributeEvent(uniqueId, event.UPDATE_DATA)�

�

UpdateDataEvent(dataDescription)�

�

UpdateDataEvent(dataDescription)�

AddData(Data
Description)�

�

If we are using dataStore methods we don�t need an upload url as argument. The datastore can also check internally if it should uses GSI or HTTP Upload�

�

Events are sent from dataStore instead of Venue. Internal methods (AddData, UpdateData), copied from the venue, can be added and used for this purpose in the DataStore. �

�

�

By returning a datastore object from the venue instead of a url and use datastore methods instead of file functions we can extend the datastore interface with more methods as needed without changing the venue interface.�

_1116849383.vsd
�

�

�

�

�

�

VenueClientUi�

�

UploadLocalFiles(dn, publicId, fileList, progressbar)�

AddData(DataDescription)�

DataStore�

AddData(DataDescription)�

EventClient�

�

DistributeEvent(uniqueId, event.ADD_DATA)�

VenueClient�

�

AddData(Data
Description)�

�

The datastore is responsible for distributing the event instead of the venue. DataDescriptions would be stored in the datastore instead of in the venue which would make personal data independent from venue data (allowing personal data and venue data to have the same name)�

�

_1116849193.vsd
�

�

�

�

�

�

VenueClient�

�

DownloadFiles(dn, localPathName, DataDescriptonList, progressbar)�

Venue�

DataStore�

�

Send a DataDescription instead of size and checksum since the description includes that already�

GetDataStore()�

�

_1116845951.vsd
�

�

�

�

�

�

GetData()�

GetDataStore()�

GetData()�

VenueClient�

EventClient�

�

�

GetDataStore()�

�

Venue�

soapPROXY�

�

When an AddUserEvent is received, we need to get the new users personal data�

�

When you initially enter a venue, a DataDescription list including personal data have to be retrieved from all participants already in the venue. This should probably be done in a thread not to introduce too much delay in the enter action�

AddUserEvent(clientProfile)�

EventService�

DistributeEvent(uniqueId, event.ENTER)�

Enter(self.profile)�

DataStore�

EnterVenue(url)�

�

