AGTK Initialization

Robert Olson

April 23, 2003

Introduction

There is a fairly small amount of state that is required to be initialized before the AG Toolkit can become fully operational. In this note we describe the initialization requirements and the API defined for AGTK-based tools to perform that initialization.

Description

The following subsystems need to be properly initialized:

· Logging

· Certificate management

Logging

The Python standard library will, as of Python 2.3, include a message logging mechanism. [1] This mechanism is used extensively throughout the AGTK libraries. As Python 2.3 is not yet released, we are using the independent distribution of the logging library that is already available. [2] At the beginning of program execution, the logging system must be initialized to select the level of logging information to be logged and the destination of that logging information.

Certificate Management

The certificate management framework manages a toolkit-defined set of certificates, both user identity certificates and trusted CA certificates. The integration between this framework and the Globus toolkit underlying the application messaging is achieved through the setting of several environment variables [3]. 

It is important that the certificate management framework is initialized properly in each application that uses it; the default configuration for the Globus toolkit may well be incorrect if the framework is not set up properly.

GUI Issues

An interesting twist to the certificate management framework initialization is that the framework includes a binding to a GUI. The GUI allows the user to browse identity and trusted CA certificates, and to create Globus proxies as needed.

The functionality that provides browsing of certificates need not be configured with the framework, as it is not critical to the framework’s operation. However, if the user is to be automatically prompted for proxy creation and renewal, it must be able to determine the appropriate interface to use for performing this function. 

In the current state of the Globus proxy generating software, the certificate management framework collaborates with grid-proxy-init to provide a high-level interface to the user for generating proxies. Hence, if the application is GUI-based (like the main virtual venues client), the certificate manager needs to know this. And, further, it needs to know it at toolkit initialization time, as that is when the state of the certificate environment is analyzed and a proxy created if necessary.

The requirement for knowledge of the GUI to be used in the application at the time of toolkit initialization can be satisfied several ways.

· Create interface-specific subclasses of the toolkit Application object. Each of these can then instantiate the appropriate interface-specific subclasses of the certificate manager interface object.

· Create interface-specific initialization methods on a single Application object.

· Require the user to pass in interface-specific certificate manager interface classes, and leave the toolkit interface-ignorant.

The first option is likely the cleanest.

Service Certificates

Services, processes that run not with the identity of a person via a proxy certificate but rather using the identity provided by a service certificate with a private key unprotected by a passphrase, require special initialization. By default, the certificate management infrastructure will assume that the application is to run using a proxy certificate. 

A service will likely not require the full flexibility of the certificate manager, at least with regard to the flexibility of interactively and adaptively choosing an identity certificate to use. It also does not require the machinery to generate proxy certificates, and hence requires no knowledge of a GUI environment.

These considerations lead toward a solution that mirrors the first solution above for solving the multiple-interface problem: Define a subclass of Application specific to the initialization of services. This subclass will take as an argument the service certificate and private key files under which identity this service is to execute.

If the application can execute either as a service or as a normal user, it is the application’s responsibility to determine how it is to execute and create the appropriate application object. 

Further Discussion

It would be interesting to define a mechanism where each module that requires initialization can register itself with the “initialization master” and have things hang together automatically at startup. We do not address this explicitly in the current infrastructure, but do keep the possibility in mind in the design of the system.

It is important to remember that the toolkit initialization code is not a general-purpose system initialization mechanism. Hence, it can contain within itself information about the detailed requirements of the subsystems that need to be initialized. 

API

To use the AG toolkit initialization mechanism, one creates an instance of the AccessGrid.Toolkit.Application object. This object represents an active toolkit application. Initialization and finalization methods are invoked on this object.

The Application object also provides access to any appropriate per-application facilities, like the certificate manager singleton and logging configuration.

We have chosen to facilitate the differing initialization requirements of the different execution environments (GUI, command-line, command-line with only a service cert) by defining a subclass of Application for each of these cases.

Class Application

Initialize()

Initialize the toolkit.

Finalize()

Shut down the toolkit.

GetCertificateManager()

Return the certificate manager instance for this application.

Class WXGuiApplication

This class wraps the application configuration for a WXPython-based application.

WXGuiApplication()

Toolkit application instance constructor.

Class CommandLineApplication

This class wraps the application configuration for a text-based application.

CommandLineApplication()

Toolkit application instance constructor.

Class ServiceApplication

This class wraps the application configuration for a text-based application that uses a service certificate for its authentication.

ServiceApplication()

Toolkit application instance constructor.

Global Functions

The following are toplevel functions in the Toolkit module.

GetApplication()

Returns the single Application instance for this application. If the application has not yet been initialized, returns None.

Bibliography

http://www.python.org/peps/pep-0282.html1.
Sajip, V. and T. Mick, PEP 282: A Logging System. 2002.
2.
Sajip, V., A Logging System for Python.http://www.red-dove.com/python_logging.html
3.
Olson, R., Certificate Management in AG 2.0. 2003.



