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Abstract 

The need to discover and select entities that match specified requirements arises in many contexts in 
distributed systems. Meeting this need is complicated by the fact that not only may the potential consumer 
specify constraints on resources, but the owner of the entity in question may specify constraints on the 
consumer. This observation has motivated Raman et al. to propose that discovery and selection be 
implemented as a symmetric matching process, an approach they take in their ClassAds system. We present 
here a new approach to symmetric matching that achieves significant advances in expressivity relative to 
the current ClassAds—for example, allowing for multiway matches, expression and location of resource 
with negotiable capability and querying on policy. The key to our approach is that we reinterpret matching 
as a constraint satisfaction problem and exploit constraint-solving technologies to implement matching 
operations. We have prototyped a system that implements these ideas, RedLine, and successfully applied 
this prototype to some challenging matching problems from several application domains. This work both 
introduces an interesting new application for constraint language technologies and presents new ideas 
concerning the instantiation and implementation of those technologies in an application-specific setting.   

1 Introduction 
The development of Internet and Grid technologies [10] has led to a remarkable increase in the 
number of resources to which a user, program, or community may have access. The dynamic 
nature of distributed systems, however, means that these resources may appear and disappear 
unpredictably. Thus, we require scalable, efficient, and expressive mechanisms for the automated 
discovery and selection of resources that meet specified requirements. (Here, and in the rest of 
this article, we use the term resource as a generic term to indicate a physical device, service, data 
item, or other entity for which discovery and selection procedures are required. We believe that 
our techniques are broadly applicable.) 

Complicating the resource selection problem is the fact that in many situations the resources that 
we seek to discover may themselves place requirements on acceptable requests. For example, the 
autonomous nature of Grid resources may result in a resource allowing access only to users 
belonging to a certain group or able to pay a fee. This observation led Raman et al. [27] to 
propose that resource search and selection be treated as a bilateral matching process. In their 
approach, properties of requests and resources are characterized in a common syntax capable of 
representing both attributes and policies. A symmetric matching step is then used to determine, 
for a particular request-resource pair, whether policies are mutually satisfied. This matching step 
can be embedded in a larger search as follows: (1) resource owners advertise their resources and 
access policies to a matchmaker, (2) the matchmaker stores these advertisements, (3) resource 
requesters advertise their resource requirements to the matchmaker, and (4) the matchmaker 
matches a request against resource advertisements and returns the result, a subset of the stored 
advertisements. Raman et al.’ s implementation of this concept, the Condor matchmaker 
[20,26,27], has been applied successfully in numerous application domains. 
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• In this article, we report on work that extends the power and scope of the matchmaking 
concept significantly by treating matching as constraint satisfaction problem. We describe a 
new matching system within which we can do the following, none of which are supported 
within ClassAds. 

• Describe and match resources whose properties are expressed by sets or ranges. ClassAds 
describe capability of a resource by binding a value to a property. Yet some resources have 
complex property that can’ t be described by a single value. For example, for a screen capable 
of displaying 640*480 pixels and 16 million colors, 800*600 pixels and 64 thousand colors, 
or 1024*768 pixels and 256 colors, its property resolution is a feature set. We design syntax 
and matching mechanism to describe and locate resource whose properties are expressed by 
sets or ranges.  

• Match advertisements based on policy as well as properties. ClassAds encode policies in 
requirements statements that cannot be queried. Yet policy may often form an important 
resource selection criterion. For example, a user may ask: “Find all machines that allow 
access between 7:00 PM and 9:00 PM.”  We allow requirements to be matched in the same 
way as other properties.  

• Matching resource sets as well as individual resources. ClassAds perform only one-to-one 
matches. Yet, for example, a user may require a “set of computers, all faster than 800 MHz, 
with aggregate memory 10 Gbyte.”  We support such multiway matches, allowing a user to 
locate a collection of computers that meet our example requirement in the aggregate. 

To permit experimentation with our approach, we have designed and prototyped a language, 
semantics, matching mechanism, and matchmaking system that we collectively call RedLine. We 
have applied RedLine to some challenging matching problems from several application domains. 

The rest of this paper is structured as follows. Section 2 describes related work. Sections 3–5 
describe the structure of the RedLine system, description language, and RedLine matchmaking 
process, respectively. In Section 6, we present applications used to evaluate our design. We 
conclude and outline our plans for future work in Section 7.   

2 Related Work 
The matching problem occurs in many contexts, and we find a wide variety of approaches to its 
solution. Here we review the most relevant previous work, focusing in particular on research 
within distributed computing and e-commerce. 

Information systems. Much effort has been devoted to developing information systems for 
publishing, aggregating, and supporting queries against collections of resource descriptions 
(SNMP [29], LDAP [18], MDS [12], UDDI [21]). Such systems differ in various dimensions, 
such as their description syntax (e.g., MIBs [29], relations [11], LDAP objects [18]), query 
language (e.g., SQL [11], Xquery [28], LDAP query [18]), and the techniques used to publish and 
aggregate resource descriptions (e.g., soft state vs. stateful servers, complete descriptions vs. 
Bloom filters). However, these systems all have in common that the resource provider-consumer 
interaction is asymmetric: the provider-published description of its properties is queried by the 
consumer to identify candidates prior to generating requests for resource. The consumer selection 
procedure may comprise a simple query or, alternatively, involve a procedural algorithm based, 
for example, on a performance model [2,6].  

Although these information systems provide access control based on users’  accounts/IDs, we 
argue that it are not enough for express and enforce resource provider policy, which restricts the 
availability of resource based on requesters’  accounts/IDs, resource access time, and usage of this 
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resource, etc. Furthermore, data access controls in these information systems are configured 
manually by the administrator who is usually not the same person as resource providers. 
Considering the numerous numbers of resources and their heterogeneous policies in an 
information system, it won’ t be an easy work for an administrator to manage them. Thus we 
model resource selection as a symmetric process that enables the easy expression and 
enforcement of resource provider policy.   

Symmetric evaluation. Symmetric evaluation was pioneered by the Condor matchmaker system 
[20], in which both requests and descriptions are expressed using the same ClassAds syntax. A 
ClassAd can contain (a) properties (of a request or resource), expressed as attribute/expression 
pairs; (b) requirements that must be satisfied by a matching ClassAd, expressed as a Boolean 
requirements statement; and (c) a function used to assign a numeric rank to a matching ClassAd, 
expressed as a rank statement. Two ClassAds match if the requirements expression of each 
evaluates to true.  

Request = [ owner = "chliu";
requirements = other.type=="machine" && other.cpuspeed > 500M;
rank = other.memsize ]

Resource = [ name="foo"; type="machine"; cpuspeed=800M;  memsize=512M;
requirements=member(other.owner, { "chliu", "lyang"} )

&& DayTime() > '18:00'  ]
 

Figure 1. Two examples of Condor ClassAds. See text for details. 

We can use requirements expression in request description to describe requirements to the 
resource and requirements expression in resource description to describe its policy. Thus a 
success match between a resource and a request means this resource has required properties and 
is accessible for this request. Figure 1 shows two example ClassAds. The first, Request, describes 
a request with a single property owner = chliu, a requirements statement requesting a computer 
with a CPU faster than 500 MHz, and a rank statement that returns the memory size. (The syntax 
Other.<attr>  here is used to denote the value of attribute <attr>  in the other ClassAd.) The 
second ClassAd, Resource, describes a computation resource named foo with an 800 MHz CPU 
and 512 MBytes memory, and with requirements indicating that it is accessible only to users 
chliu and lyang and only after 6:00 PM. 

The Condor equivalent of an information system such as UDDI is a matchmaker that maintains a 
pool of ClassAds representing candidate resources and then matches each incoming request 
ClassAd with all candidates, returning a highest-ranked matching candidate.  

Other symmetric matchmaking systems used for resource selection include the Jini lookup service 
[1], DAML-S matchmaker [23], LARKS [30], and the HP e-commerce matchmaker [13,25]. 
These systems use a range of different syntaxes (Java object, service profile, RDF, descriptive 
logic concept) and matching mechanisms (semantic or syntactic), but have in common the use of 
symmetric evaluation mechanisms in which resource and request are described by the same 
syntax, and a matchmaker checks if these two descriptions match each other.   

However, these systems have limitations when it comes to expressing and locating resources with 
property values that are a feature set or range, as suggested by IETF RFC2506 [17] and W3C 
CC/PP [22], and/or to expressing and locating multiple resources with a particular relationship: 
the resource co-selection problem, as discussed by Dinda [9,24], Raman [26], and Czajkowski 
[12], among others.  

We argue that no previous work solves these two problems completely. Gang matching [26] 
solves the resource co-selection problem by allowing a ClassAd to specify multiple resources, but 
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not sets of resources defined by their aggregate characteristics; set matching [4] allows a ClassAd 
to specify resource sets, but not multiple resources of different types; neither can express and 
locate resources with a property value that is a feature set or range. We present a solution to 
overcoming these limitations based on the use of a constraint programming language approach to 
modeling and implementing the matchmaking process.  

3 A New Approach to Matching 
The essence of our approach is to treat matching as a constraint satisfaction problem and to apply 
constraint-solving technologies to implement resource search and selection functions. 

3.1 Background on Constraints 
Definition 1: A constraint C is of the form c1 ∧  … ∧  cn where n >= 0 and c1, …, cn are primitive 
constraints. The symbol ∧  denotes and, so a constraint C holds whenever all of the primitive 
constraints c1, …, cn hold.  

Definition 2: A constraint C is satisfiable if there exists a value assignment to every variable v ∈ 
vars(C) such that C holds. Otherwise, it is unsatisfiable. vars(C) denotes the set of variables 
occurring in constraint C.  

The statement (X=Y+2) ∧  X<3 is an example of a constraint. It stipulates a relation that must 
hold between any values with which we choose to replace variable X and Y. This constraint is 
satisfiable because there exists an assignment X=2, Y= 0 that makes all primitive constraints 
hold.  

Definition 3: A constraint-solving algorithm is an algorithm that, when given a constraint C, 
either finds an assignment to all variables such that this constraint holds, or finds this constraint is 
unsatisfiable.  

Usually, we call a kind of constraint problems, in which the possible values of a variable are 
restricted to a finite set, as constraint satisfaction problems. Its definition is as follows.   

Definition 4: A constraint satisfaction problem, or CSP, consists of a constraint C over variables 
x1,…, xn and a domain D that maps each variable xi to a finite set of values, D(xi), that it is 
allowed to take. The CSP is understood to represent the constraint C ∧  x1∈D(x1) . … . xn∈D(x1) 
[19], where ∧  denotes “and”  and ∈ means “ is an element of.”   

For example, the constraints, C={ x1 > 1, x1 + x2 <4} , D(x1) = [1, 2, 3], D(x2) = [1, 2, 3], describe 
a CSP. The problem is to find a value for x1 and x2, subject to conditions that the value of x1 must 
be bigger than 1 and the sum of x1 and x2 must be less than 4. The possible values for both x1 and 
x2 are 1, 2, and 3.  

Constraints have been used to model many real-life problems, such as scheduling, routing, and 
timetabling, since these problems essentially involve choosing among a finite number of 
possibilities. Constraint-solving algorithms also have been developed in several research 
communities, including arc and node consistency techniques in the artificial intelligence 
community, bound propagation techniques in constraint programming community, and integer 
programming techniques in the operations research community [15,16,19].  

3.2 Matching as Constraint Satisfaction 
The matchmaking process is triggered by a resource request, in which the customer specifies 
resource requirements and interrelationships, such as “a CPU with 500 MHz CPU speed and a 
disk at least with 1000M free disk space, both located in the same domain.”  We must then select 
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resources from a resource pool such that all request requirements and resource policies are 
satisfied.  

We can formalize matchmaking (resource selection process) as a CSP by associating a variable 
with every requested resource. The domain of each variable is all available resources. Constraints 
on variables, which describe relations that must hold when choosing values for variables, express 
requirements concerning these resources and their access policies. In our example, we use two 
variables to express the required CPU and disk. Their domains are all CPU resources and disk 
resources, respectively. Constraints on the values of these two variables describe requirements. 
We can then use a constraint-solving algorithm to solve the problem. 

We want a modeling language that allows for a declarative representation of both request(s) and 
resource description(s) and supports constraints on the record-like data types that are often 
required when describing a request for multiple related resources each with multiple properties. 
Thus, we do not adopt modeling languages such as OPL [14], Oz [3], and gprolog [8], as these 
only support constraints dealing with integer, real or string variables.  

3.3 The RedLine System 
As illustrated in Figure 2, the RedLine system has a layered architecture. The RedLine language 
defines the syntax and basic semantics for the specification of descriptions. A description is a set 
of constraints describing either a request or a resource. The syntax is fairly straightforward, 
allowing for the expression of a range of constraints on resource attributes. 

Satisfaction-check Engine

Matchmaking Engine

Grid
Resource
Selection
Service

E-Commerce
Searching

Engine

Other
matchmaking

Services

RedLine Language
DAML+OIL Defined

Vocabulary
 

Figure 2. Layered structure of the RedLine system 

For added expressive power, the RedLine system allows for the specification of a vocabulary to 
be consulted when performing constraint checking. A vocabulary can use an ontology language 
such as DAML+OIL [5] and OWL [7] to define the semantics of words in a description: 
specifying, for example, that a string “Redhat”  is a kind of Linux operating system. 

The Satisfaction-check engine combines RedLine language statements and the semantic 
information defined in vocabulary to determine whether a constraint is satisfiable. 

The matchmaking engine implements the logic used to match one request description with 
multiple resource descriptions. This process proceeds in two steps: 

1. Map the resource selection problem at hand into a CSP problem that captures the required 
attributes of the request and existing resources.  

2. Call the satisfaction-check engine to check whether a given assignment to variables 
causes conflicts. 
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These building blocks can be used to build a variety of different higher-level services, such as a 
resource selection service for Grid computing or a Web service discovery service. For example, 
in a Grid environment, RedLine matchmaker functions can be incorporated into an index node 
[12] that uses information service functions to maintain the information used for resource 
selection.   

The semantic information defined in the (optional) vocabulary allows RedLine to perform 
semantic matches [5]. For example, a request for a resource with a Linux operating system will 
match a resource description that states its operating system as Redhat if Redhat is defined as a 
kind of Linux operating system in the vocabulary.  

4 The RedLine Description Language  
The design of the RedLine description language was informed by the following requirements:  

• Resource sets. We want to be able to express requests that refer to multiple resources: for 
example, “a set of computers with total memory size bigger than 10G.”  

• Ability to express resources property whose value is a feature set or range.   

• Ability to describe requirements and preferences. An advertiser should be able to control 
what descriptions can match their description and the criteria to be used to select from 
among multiple matching descriptions. 

• Symmetric description of resource and resource request. The same description syntax 
should be used to describe resources and requests. Thus, this language would allow both 
resource customers and resource owners to control what kind of descriptions can match 
their descriptions. Also, having the same syntax at both ends makes it easier for resource 
owners and customers to query and understand descriptions of their counterparts.  

4.1 RedLine Grammar 
We describe in turn the RedLine type system, set-related functions, attributes, constraints, and 
descriptions. 

4.1.1 Types 
In addition to the usual base types (real, integer, string, Boolean), RedLine defines the following 
collective types:  

• Description, a finite set of statements about properties of an entity, used to describe one 
or a kind of resources. See Section 4.1.4 for details.  

• Set, an unordered sequence of one or more values or expressions, within which a given 
value can appear only once (i.e., an attempt to place a value into a set more than once is 
ignored). A set is constructed as follows: 

[expr, expr, …, expr] : a set consisting of evaluation results of exprs.  
• Enumeration, used to define a variable whose value can only be chosen from a finite set 

of values. Enumeration variables may only contain values that are defined in the 
enumeration. For example, in the statement: 

os=ENUM[“ linux” , “windows” , “unix” ] 

Variable os may be assigned only the values “ linux” , “ windows”  or “ unix” .  

• Dictionary, a set of key-value pairs. For example, the following assigns a dictionary 
value to the identifier bandwidth: 
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      bandwidth= DICTIONARY[{ “ trapezius” , 10} , { “vatos” , 10}  ] 

We can access a value by reference to its key, as in  

       x = bandwidth(“ trapezius” )  // here x is assigned to 10 

Typing in the RedLine language is dynamic: that is, the types of variables are defined by usage, 
not declaration. 

4.1.2 Attributes and Constraints 
RedLine uses attributes to describe resource properties. In matchmaking, it is not always possible 
or preferable to describe an attribute by a particular value. Unlike other languages that use 
attribute-value pairs to describe entities, RedLine uses constraints that describe a relation that 
must hold when choosing values for variables: 

Constraint ::= variable ‘=‘  expr  
      |    logicexpr 
      |    predicate 

Expr is an arithmetic expression with operators as “+” , “ -“ , “ * ” , “ /”  and “^” . The operands can be 
of type integer or real, for example,  

a= 2: value of a is equal to 2. An assigned variable is maximally constrained: no further non-
redundant constraints can be imposed on the variable, without introducing an inconsistency. 

a=b+c: value of a is equal to sum of value of b and c; value of b is equal to difference of 
value of a and c; value of c is equal to difference of value of a and b.  

LogicExpr is a logical expression with operators as “>” , “<” , “>=” , “<=” , “==” , “&&”, “ ||” , and 
“ !” . The operands of logic expression can be of type integer, real, Boolean, and string. For 
example:   

a>100: value of a is bigger than 100. 

a > b+c: value of a is bigger than the sum of b and c. 

Predicate is a system-defined constraint. We define the following predicates. 

• Minimize(<expr>): Multiple values for variables are possible; choose the one minimizing 
the value of expression <expr> .   

• Maximize(<expr>): When there are multiple possible value for variables, choose the one 
maximizing the value of expression <expr> . 

• Forall x in <set> : All elements in <set>  are subjected to constraints related to x. For 
example, x.cpuspeed > 100 means all elements in <set>  have an attribute named 
cpuspeed with value bigger than 100.  

• Forany x in <set> : One or more elements in <set>  are subjected to constraints related to 
x. For example, x.cpuspeed > 100 means there is at least one element in <set>  having an 
attribute cpuspeed with value bigger than 100. 

• Required(<set of attribute>): All attributes listed in <set of attributes>  must appear in 
the other description involving in a match. See Section 5.1 for details. 

Users can use Minimize and Maximize to describe their preferences to resources if multiple 
choices are available. Forall and Forany are used to describe constraints on elements in a set. 
Required is used to specify the necessary information for a successful match in resources (see 5.1 
for details).     
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4.1.3 Set Functions 

In order to describe characteristics of resource sets, RedLine defines the following set-related 
functions: 

• Count(<set>): returns the number of elements in a set <set>. 
• Max(<set>): returns the maximum value of a integer/real set <set>, error otherwise. 
• Min(<set>): returns the minimum value of a integer/real set <set>, error otherwise. 
• Sum(<set>): returns the average value, expressed as a real value, of a integer/real set 

<set>, error otherwise. 
• InSet(<set>, <value>): returns true if <value> is an element of <set>, false otherwise.  
• Set_Intersection(<seta>, <setb>): returns the intersection of <seta> and <setb>. 
• Set_Union(<seta>, <setb>): returns the union of <seta> and <setb>. 
• Set_Difference(<seta>, <setb>): returns the set consisting of elements in <seta> and not 

in <setb>.  
• Set_S_Difference(<seta>, <setb>): returns the set consisting of elements that are in 

<seta> and not in <setb> or in <setb> and not in <seta>. 

4.1.4 Description Structure 
A description is a set of statements in which each statement is expressed by a constraint. The 
syntax of construction of a description is as follows:    

description=[  constraints1; constraints2; …; constraints3]  

Description is also a data type. A description value can be assigned to a variable as follows: 

A=[ cpuspeed=1; memsize=2] 

A new operator ISA is used to specify the constraints to a description type or description set type 
variable as ‘<variable> ISA <description>’  and ‘<variable> ISA SET<description>’ . The 
meaning is illustrated by the following two examples.  

r ISA [os=” linux” ; memsize>1G] means that the value of r is a description with attribute os 
equal to “ linux”  and attribute memsize bigger than 1G.  

t ISA SET[ os=” linux” ; memsize > 1G] means that the value of t is an description set whose 
elements have attribute os equal to “ linux”  and attribute memsize bigger than 1G. 

These two kinds of constraint on the description type of variables, assignment and ISA, constrain 
variables differently. An assignment to a variable constrains the variable maximally; any other 
nonredundant assignment then results in an inconsistency. In contrast, an ISA-constrainted 
variable can be refined by more constraints. For example, A=[cpuspeed=1; memsize=2; 
os=” linux” ]  will conflict with constraint A=[cpuspeed=1; memsize=2] ; however, a constraint r 
ISA [os=” linux” ; memsize>1G]  can be refined by constraint r = [os=” linux” ; memsize= 2G; 
cpuspeed=500]  without inconsistency.  

We can refer to attribute values in a description and a description set by the “ .”  operator. Thus, in 
the preceding example, r.os evaluates to “ linux”  and t.memsize to a list comprising the values of 
the attribute memsize for every element in set t. 

4.2 Examples of RedLine Descriptions 
Every RedLine description can be interpreted as a resource advertisement as well as a request. A 
description’s role may be determined by how the description is sent to the matchmaker:  
descriptions submitted through a resource advertising interface are resource descriptions, and 
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descriptions submitted through request advertising interface are request descriptions. In order for 
the description to be understandable by all users, all advertisers need to use the same terminology.  

[user="globus-user";
 group="dsl-uc";
 computation ISA SET[type="computation"];
 storage ISA [ type="storage"; space > 100];
 Forall x in computation;
 x.cpuspeed > 150;
 x.bandwidth[storage.hn] > 30;
 x.accesstime > 18;
 Sum(computation.memory) > 300;
 storage.space > 80;
 storage.accesstime > 18 ]

R1= [type="computation"; hn="c1.uchicago.edu";
         cpuspeed=200;
         bandwidth= DICTIONARY[

{ "s1.uchicago.edu", 20} ,
{ "s2.uchicago.edu", 40}  ];

         accesstime > 17 ]
R2= [type="computation"; hn="c2.uchicago.edu";
         cpuspeed=200;
         bandwidth=DICTIONARY[

{ "s1.uchicago.edu", 20} ,
{ "s2.uchicago.edu", 40}  ];

         accesstime > 17]
R3= [type = "storage"; hn="s1.uchicago.edu"; space=100]
R4= [type = "storage"; hn="s2.uchicago.edu"; space=200]

Request Resources

 

Figure 3. Examples of RedLine description  

Figure 3 shows a RedLine description specifying a resource request that requires a set of 
computation resources with CPU speed faster than 150 MHz and total memory size bigger than 
300 Mbytes, a storage resource with space bigger than 80 G, and a network connection between 
every computation resource and the storage resource that is faster than 30 Kbytes per second. The 
access time to these resources is after 6:00PM. ClassAds cannot describe multiple resources in 
this way. Furthermore, not only can RedLine describe requests for multiple resources of different 
types, it can also describe resource set with aggregate characteristics.  

Figure 3 also shows four simple examples of resource descriptions: two computers (R1 and R2) 
and two storage systems (R3 and R4). These examples illustrate how RedLine expresses both 
access policy (accesstime) and properties (such as cpuspeed) in the same way, thus allowing a 
user to query both policy and properties. Please refer to examples in Section 6 for details.  

5 Matchmaking in RedLine 

5.1 Definition of Match 
A RedLine description is a self-consistent collection of constraints over named properties of an 
entity [25]. A description D1 matches a description D2 if constraints D1 ∧  D2 is satisfiable. This 
definition allows a match to proceed if D1 specifies constraint(s) on an attribute A, and D2 does 
not: the match fails only if D1 ∧  D2 contains constraint(s) on A that turn out to be mutually 
inconsistent. This approach is consistent with the observation that we often want to allow matches 
between descriptions with different level of generality and complexity. For example, the simple 
request description [ type=” computation” ]  will match all computational resources descriptions 
that contain a constraint type=” computation.”  

In some situations, we may not want a match to succeed simply because the other participant(s) 
do not specify constraints on an attribute. Thus, RedLine provides a constraint 
Required(<attribute-set>) that requires all attributes listed in <attribute-set>  to appear in the 
matching description. Users can use this constraint to limit the matched result to descriptions with 
particular information. For example, a request [ type=” computation” ; Required(os)]  won’ t match 
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the computational resource descriptions R1 and R2 in Figure 3 because there is no property os in 
these two descriptions. 

RedLine also defines multilateral match: Descriptions D1, D2, … , Dn match a description R if D1, 
D2, …, Dn is an assignment to variables with description or description set type in description R 
and R is still satisfiable after replacing these variables with their values. For example, in Figure 3, 
resource descriptions R1, R2, and R4 match the request because assigning R4 to attribute storage 
and set [R1, R2] to attribute computation satisfies all the constraints in these descriptions.  

5.2 Matchmaking Process 
In Section 3, we presented the syntactic basis for RedLine matchmaking. We now consider the 
problem of efficiently identifying matched resource descriptions for a request. We focus here on 
multilateral matchmaking and treat bilateral match as a special case.  

Multilateral matchmaking is triggered by a request description that describes multiple resources 
and their relationship, such as Figure 3. In a request, resources are associated with variables by 
constraints ‘<variable>  ISA <description> ’  or ‘<variable>  ISA SET<description>.’  In order to 
distinguish these variables from those used to describe resource attributes, we call them as 
resource variables. As defined in Section 5.1, matchmaking seeks to find values for these 
resource variables.  

Matchmaking proceeds in two steps. First, the matchmaker decides the domain of these variables. 
For variables described by ‘<variable>  ISA <description> ’ , the matchmaker algorithm treats 
resources that match description <description>  as the value domain of <variable> . For variables 
described by ‘<variable>  ISA SET<description> ’ , the matchmaker uses all resources that match 
description <description>  to construct candidate sets as the value domain of <variable>. 
Candidate set construction is a complex computation. Assume R is a set including all resources 
matching <description> , candidate sets for <variable>  are subsets of R. Because the number of 
subsets of R is exponential to its cardinality, we use a heuristic method suggested by Dail { Dail, 
2002 #41}  and Liu { Chuang Liu, 2002 #39}  to create candidate sets. The basic idea is to rank all 
resources firstly based on some criteria, then construct a candidate set V i (i=1 to number of 
resources in R) including the first i best resources in R.  So the cardinality of value domain is 
linear to the number of resources. 

In the second step, the matchmaker checks whether there exists a conflict-free assignment to 
these resource-associated variables. As mentioned in Section 3, this is a constraint satisfaction 
problem (or constraint optimization problem if constraint Maximize() or Minimize() is specified).  
CSP research community has developed a lot of efficient algorithms to solve the combinatorial 
search problems. One of the benefits to model matchmaking into a CSP is to utilize these existing 
algorithms to implement the matchmaking process. In our Redline prototype, we have 
implemented the matchmaking process as follows.   

1. Use a node consistency algorithm [19] to reduce the domain of every variable. This 
algorithm uses constraints involving only one variable to reduce the domain of variables. 
For example, in Figure 3, constraint storage.space > 80 is used to remove all storage 
resources with space less than 80 from value domain of variable storage.  

2. Use a backtracking method [19] to solve the problem. Here, algorithm performance is 
critically dependent on the order in which both the variable and its value are picked. We 
implemented the first-failing algorithm that starts backtracking from the variable with the 
smallest domain, and for a variable we chose a value from its domain randomly. 

Assume a request with K resource variables and a resource pool including N resources, the 
complexity of this matchmaking process is O(Nk). So for a given request, the algorithm 
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complexity is polynomial to the number of resources. For scenario where N is huge and complete 
algorithm is not required, other heuristic and stochastic algorithm for CSP problem is available, 
such as Hill-Climbing, Min-Coflict and Tabu-Search { BARTÁK, 1998 #131} , etc. Although we 
have not implement these algorithms, we argue that by modeling matchmaking into a CSP 
problem, we relieve ourselves from algorithm issues.  

Preliminary experiments with this prototype show that performance is at least comparable to that 
of the Condor ClassAd matchmaking system on several large-scale resource selection problems. 
However we do not yet have a detailed understanding of RedLine performance. 

6 Applications  
No standard set of challenge problems for matchmaking has been defined. Thus, a comprehensive 
evaluation of the usability of the RedLine language will require extensive practical 
experimentation in multiple different application domains—experimentation that we have not yet 
undertaken. Here, however, we use three examples to demonstrate the range of matching 
problems that can be expressed in this language. 

Our first example shown in Figure 4 illustrates the ability of the RedLine language to express and 
locate resource whose properties value is a feature set and range: 

resource = [
   type="displayDevice";
   resolution = ENUM [ [pix-x<=640; pix-y<=480; color<= 24],
                                     [pix-x<=800; pix-y<=600; color<= 16],
                                     [pix-x<=1024; pix-y<768; color<=8] ] ];
request = [
   rs ISA [type="displayDevice"]; rs.resolution.pix-x =750;
   rs.resolution.pix-y=500; rs.resolution.color=4 ]

 

Figure 4. Display Device Example 

Description resource describes a screen capable of displaying 640*480 pixels and 16 million 
colors (24 bits per pixel), 800*600 pixels and 64 thousand colors (16 bits per pixel), or 1024*768 
pixels and 256 colors (8bits per pixel). Description request describes a request for a display 
device that can show 750*500 pixel image using 16 colors. This request will match this screen.  

Figure 5 illustrates the use of ranking criteria to instruct the matchmaking process to select the 
“best”  resource. We show three resource descriptions and a request description. The request 
expresses the user’s requirement to find a site that has the maximum number of a set of specified 
input data. It also requires, as an additional constraint, that the site have a minimum amount of 
free space. This code might be used, for example, within a Data Grid system to decide where to 
send a task. Note how easily the criteria used to select the destination site can be changed.  

site1= [ type="site"; name="site1"; space = 100; data=["a", "b", "c"] ]
site2= [ type="site"; name="site2"; space = 200; data=["c", "d"] ]
site3= [ type="site"; name="site3"; space =300; data=["b" ]]
request = [
   site ISA [ type="site"];
   site.space > 10;
   wantedData =["a", "b"];
   availableData= Count(Set_Intersection( wantedData, site.data));
   Maximize(availableData) ]

 

Figure 5. Data Grid example 
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Figure 6 illustrates RedLine’ s support for query function. Description RS describes a resource 
with CPU speed 500 MHz and an access policy that states that it is available only to users 
“globus”  and “dsl-uc”  after 6:00 PM. Description Q1 is a query for a resource available after 8:00 
PM. Description Q2 is a query for a resource that has a CPU speed faster than 400 MHz. Both Q1 
and Q2 will find RS because description Q1 and Q2 match RS. Note that both access policy 
(accesstime in Q1) and resource property (cpuspeed in Q2) can be used as criteria to query 
resources.  

RS= [ cpuspeed = 500; accesstime > 18;
          permittedUser= ENUM[ "globus", "dsl-uc"]]
Q1= [ accesstime > 20]
Q2= [ cpuspeed > 400 ]

 
Figure 6: Query Examples 

7 Summary and Future Work 
Resource selection in Grid environments usually involves multiple resources with diverse 
ownership and policies. We have designed and implemented a description language, RedLine, for 
expressing constraints associated with resource consumers (requests) and resource providers. We 
have also implemented a matchmaking process that uses constraint-solving techniques to solve 
the combinatorial satisfaction problems that arise when resolving constraints. The resulting 
system has significantly enhanced expressiveness compared with previous approaches, being able 
to deal with requests that involve multiple resources and that express constraints on policies as 
well as properties. RedLine functions can be applied in a number of settings, including Globus 
Toolkit-based Grids and Web service directories. 

Our current work is focused on evaluating the effectiveness of the RedLine system in a wide 
range of applications; completing construction of a RedLine-based resource selection service by 
designing the service interface and studying the organization of descriptions in the matchmaker; 
and improving our constraint-solving algorithm to address matchmaking performance 
requirements identified in realistic application settings.  
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