How to Handle Web Services (and Legacy Client/Server Apps as a Special Case) for All Hands:

1) I propose that the current service registry information is incomplete with regards to necessary information for running legacy client/server applications. I propose further that what comprises ‘complete’ information will vary from one legacy application to another. By these assertions, legacy client/server applications become special cases of the more general ‘web service’ we are developing – that is, they get wrapped in a lightweight web service that obtains appropriate information and/or produces an appropriate run environment before launching the legacy application.

2) Provided that current venue client software already lists services, and employs a right-click menu as well as a standard menu for interaction, I propose that an additional entry be placed on both menus that would perform the client retrieval and invocation process.
3) I propose that two standard SOAP calls be required of every service. They may be extended at some future point to allow more complex interactions, but for now a minimum interface is sufficient:

a. ‘GetClient(os)’ is a call that returns a binary object that should be saved to disk on the local machine with some known temporary filename. The argument ‘os’ is a string, being one of the following:

i. ‘Win32’ – indicates a Win32 binary compatible OS, may return native or Python client

ii. ‘Linux’ – indicates a Linux binary compatible OS (ELF), may return a native or Python client

iii. ‘Other’ – indicates some other OS, returns a Python client

b. ‘GetCmdLine(os)’ is a call that returns a string, with keyword-substitution values, that is used to construct the actual command to be executed. The ‘os’ argument is as above; different command lines may be returned for different operating system environments. The following keywords may be present for substitution, prior to execution of the final command string:

i. ‘%URL%’ – The URL as stored in the service registry (i.e., the same handle used to access the service for the GetClient(os) and GetCmdLine(os) calls)

ii. ‘%HOST%’ – The hostname of the local host (sufficient to open an TCP/IP connection to – i.e., a FQDN)

iii. ‘%TEMP%’ – The fully specified location of a local temporary data store that the client may use for client-specific local information storage.

iv. ‘%CLIENT%’ – The fully-specified location and name of the binary retrieved using ‘GetClient(os)’ above.

4) Given the above, invoking a service is easy:

a. Get the handle for the selected service, perform appropriate SOAP initialization.

b. Make ‘GetClient(os)’ call on service, and save the returned binary in a file on local disk

c. Make a ‘GetCmdLine(os)’ call on service, and perform appropriate substitutions, resulting in an executable command string

d. Fork/exec (or as appropriate for OS) – i.e., run the command string (in an independent process).

The proposal above isn’t rocket science. In fact, it’s not even that hard. The most time-consuming parts are going to be my own learning curve on wxWindows and SOAP. I’d expect to have something to show (most likely VNC to start, with a Tiled-Display service to follow) within two weeks.

