Certificate Management in AG 2.0

Robert Olson

March 5, 2003

Introduction

The Access Grid 2.0 software suite utilizes the Globus Toolkit mechanisms for authentication and user identification. These mechanisms are based on a public key infrastructure, and hence the use of X.509 identity certificates. While users of supercomputers and grid-based computing systems may be willing to pay the price of inconvenience in requesting, installing, renewing, and otherwise managing their certificates, casual users of the Access Grid are more likely to find these requirements baffling and annoying.

This document attempts to define the requirements induced on the toolkit by the use of Globus and its public key infrastructure and to chart a path for solutions that lead to greater convenience for users of the Access Grid.

Basic background

The Globus Toolkit model for certificate management includes the following components. We use $HOME to denote the user’s home directory.

· A user’s identity certificate, an X.509 certificate (see Appendix A for an example of a Globus user certificate).

· The private key for the identity certificate. The private key is protected by a passphrase which must be entered each time the key is used.

· The certificates for the Certificate Authorities (CA) that are trusted by this installation of Globus (see Appendix B for an example of a CA certificate).

· The user’s proxy certificate. This is a certificate whose private key is not protected by a passphrase, and hence can be used without user intervention. It is created from the user’s identity certificate. (See appendix C for an example of a user proxy).

These certificates and keys are stored in the following locations by default, on the stock Unix-based Globus distribution:

	User’s identity certificate
	$HOME/.globus/usercert.pem

	User’s private key
	$HOME/.globus/userkey.pem

	CA certificates
	$HOME/.globus/certificates/<keyname>
where <keyname> is derived from the OpenSSL hash of the certificate

	
	/etc/grid-security/certificates/<keyname>

	User’s proxy certificate
	/tmp/x509up_<uid>
where <uid> is the Unix user id of the owner of the proxy

Alternative locations can be defined by manipulating the process’ environment variables: [1]
	User’s identity certificate
	X509_USER_CERT

	User’s private key
	X509_USER_KEY

	CA certificates
	X509_CERT_FILE
Stores one or more trusted CA certificates

	
	X509_CERT_DIR
Directory containing trusted CA certificates.

	User’s proxy certificate
	X509_USER_PROXY
File containing the user’s proxy certificate. If set, this variable will override X509_USER_CERT.

	Proxy override
	X509_RUN_AS_SERVER
If this variable is set, and a proxy certificate is not explicitly set, the system will not look for a user proxy in the default location. This allows a user to run a service under an explicitly-defined service certificate while still having a user certificate present.

The Windows version of the Globus Toolkit honors the environment variables discussed above. In addition, it looks in the Windows registry for overrides of the default settings. It will also use the value of the HOME environment variable to search for default settings. If HOME is not set, it will use the directory C:\WINDOWS instead.

The following registry keys will be searched for in the HKEY_CURRENT_USER hive, in the directory software\Globus\GSI.

	User’s identity certificate
	x509_user_cert

	User’s private key
	x509_user_key

	CA certificates
	x509_cert_file

	
	x509_cert_dir

	User’s proxy certificate
	x509_user_proxy

It is clear that while the Globus-defined mechanisms are quite flexible, they can be quite confusing to the user in general.

Certificate Management Requirements

Let us discuss the requirements that the AG software has for the management of certificates.

1. To participate in an AG session, a user must have an identity certificate of some sort. We will discuss the options for this later.

2. If the certificate has a passphrase, the user must only be required to enter this passphrase once at the beginning of a session.

3. A user must be able to use multiple certificates if he chooses; however, the system may require that only one certificate may be used in any particular invocation of the client software.

4. The installation of the AG software will ship with a default set of trusted CA certificates.

5. This set of certificates must be modifiable by the user. A user can have a customized set of CA certificates that his sessions will trust.

6. Services execute with their own identity certificate, separate from that of any user.

7. A service installation also has its own set of trusted CA certificates.

8. These certificates are modifiable by the “Administrator” for the service installation.

API

Desc

Func()

Descr

Appendix A: Globus identity certificate

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 13230 (0x33ae)

 Signature Algorithm: md5WithRSAEncryption

 Issuer: C=US, O=Globus, CN=Globus Certification Authority

 Validity

 Not Before: Jan 10 21:45:06 2003 GMT

 Not After : Jan 10 21:45:06 2004 GMT

 Subject: O=Grid, O=Globus, OU=mcs.anl.gov, CN=Bob Olson

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:e8:17:f4:b9:c7:4b:5c:01:09:95:9f:29:80:c1: 2a:b0:d9:01:61:3d:0e:ce:0e:02:0d:eb:09:f8:0d: ba:f3:ef:f0:60:24:42:62:9d:88:c0:1c:17:26:98: 95:c1:23:c4:9e:1f:0e:36:ea:88:db:3d:2f:d9:fc: 8b:5b:5c:1c:cc:4f:7b:50:26:79:20:dc:80:ac:c1: c0:cf:9f:8a:5a:19:53:60:fa:51:c8:fc:1d:cd:7f: d6:76:c0:3a:3a:b9:f2:f3:29:d4:26:e0:d1:b2:54: d5:9c:71:ed:e9:9e:9e:33:c9:b0:9b:79:b6:99:8a: 17:28:2e:cd:9d:ab:f4:fe:ff

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 Netscape Cert Type:

 SSL Client, SSL Server

 Signature Algorithm: md5WithRSAEncryption

 4f:48:12:25:f7:77:fa:a9:fb:0f:9e:28:8e:6a:96:1d:6e:10: 24:40:15:47:01:88:3e:1e:f5:72:67:3b:b3:2e:10:4d:39:26: 4e:7a:4e:f8:2f:cf:18:f5:14:3a:d5:e5:5b:b1:da:b8:c7:6b: b6:ff:20:04:49:32:16:4c:7b:2d:12:30:e8:f6:fd:b1:06:c3: b2:28:4d:fb:a1:10:f0:7d:f6:11:e4:b7:02:d6:77:7d:68:70: 63:40:d2:a1:60:f1:d0:2c:8f:82:28:f3:ee:a7:82:9f:d6:a7: 0a:56:97:57:a6:0c:bc:5c:3f:f0:e9:3f:3b:20:3d:58:49:e2: ac:cf

Appendix B: Globus CA public key certificate

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 0 (0x0)

 Signature Algorithm: md5WithRSAEncryption

 Issuer: C=US, O=Globus, CN=Globus Certification Authority

 Validity

 Not Before: Jan 23 19:20:24 1998 GMT

 Not After : Jan 23 19:20:24 2004 GMT

 Subject: C=US, O=Globus, CN=Globus Certification Authority

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit): 00:f6:9b:7a:73:64:c6:07:6e:35:c1:10:82:92:f6: db:aa:a8:92:c5:c0:87:0f:c7:95:eb:37:67:1d:af: bd:aa:4f:fe:1b:32:b0:4e:52:17:02:ae:5e:68:0c: 47:1c:d5:37:36:67:ef:24:f2:45:c9:b5:e1:eb:b7: d1:8a:a3:06:c8:36:6a:34:1f:04:15:5c:30:71:28: 31:fa:b9:57:3f:3e:84:06:10:76:d4:b9:93:2f:dc: 82:17:5c:e6:c1:13:5a:6b:69:ca:93:07:47:43:e5: 81:1a:e9:5a:b1:8a:6c:71:45:c0:e2:c8:ed:0c:0d: 94:6c:62:0f:71:53:3a:ef:65

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:TRUE

 Netscape Cert Type:

 SSL CA, S/MIME CA, Object Signing CA

 Signature Algorithm: md5WithRSAEncryption

 5c:b4:79:3e:dd:52:01:39:81:b4:21:a4:ac:18:d3:5d:5e:0e: 54:b5:6d:d4:fd:78:00:d1:1b:89:23:3b:90:7d:67:5d:9d:50: d5:73:06:df:c7:f2:4f:2e:4b:73:1c:4a:f0:a2:a4:4c:ae:f3: 92:d1:c4:47:a8:b6:46:0b:01:f2:56:33:6b:55:a3:73:f7:ce: fd:a5:46:4d:97:cb:59:66:ab:8b:54:5e:d8:b6:3d:23:37:b1: 52:31:51:8f:42:7f:96:dd:58:f8:78:b5:8e:74:bb:18:47:ee: 58:ce:81:96:36:2e:8e:f1:f1:7d:58:89:c3:47:d5:da:ff:24: 09:2c

Appendix C: a proxy certificate

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 13230 (0x33ae)

 Signature Algorithm: md5WithRSAEncryption

 Issuer: O=Grid, O=Globus, OU=mcs.anl.gov, CN=Bob Olson

 Validity

 Not Before: Mar 4 16:47:38 2003 GMT

 Not After : Mar 5 04:52:38 2003 GMT

 Subject: O=Grid, O=Globus, OU=mcs.anl.gov, CN=Bob Olson, CN=proxy

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (512 bit)

 Modulus (512 bit):

[deleted]

 Exponent: 65537 (0x10001)

 Signature Algorithm: md5WithRSAEncryption

[deleted]

Appendix D: Detailed description of proxy determination

This is taken from the Globus source code:

Function: proxy_get_filenames()

Description:

 Gets the filenames for the various files used

 to store the cert, key, cert_dir and proxy.

 Environment variables to use:

 X509_CERT_DIR Directory of trusted certificates

 File names are hash values, see the SSLeay

 c_hash script.

 X509_CERT_FILE File of trusted certifiates

 X509_USER_PROXY File with a proxy certificate, key, and

 additional certificates to makeup a chain

 of certificates used to sign the proxy.

 X509_USER_CERT User long term certificate.

 X509_USER_KEY private key for the long term certificate.

 All of these are assumed to be in PEM form. If there is a

 X509_USER_PROXY, it will be searched first for the cert and key.

 If not defined, but a file /tmp/x509up_u<uid> is

 present, it will be used, otherwise the X509_USER_CERT

 and X509_USER_KEY will be used to find the certificate

 and key. If X509_USER_KEY is not defined, it will be assumed

 that the key is is the same file as the certificate.

 If windows, look in the registry HKEY_CURRENT_USER for the

 GSI_REGISTRY_DIR, then look for the x509_user_cert, etc.

 Then try $HOME/.globus/usercert.pem

 and $HOME/.globus/userkey.pem

 Unless it is being run as root, then look for

 /etc/grid-security/hostcert.pem and /etc/grid-security/hostkey.pem

 X509_CERT_DIR and X509_CERT_FILE can point to world readable

 shared director and file. One of these must be present.

 if not use $HOME/.globus/certificates

 or /etc/grid-security/certificates

 or $GLOBUS_LOCATION/share/certificates

 The file with the key must be owned by the user,

 and readable only by the user. This could be the X509_USER_PROXY,

 X509_USER_CERT or the X509_USER_KEY

 X509_USER_PROXY_FILE is used to generate the default

 proxy file name.

 In other words:

 proxy_get_filenames() is used by grid-proxy-init, wgpi, grid-proxy-info and

 Indirectly by gss_acquire_creds. For grid-proxy-init and wgpi, the proxy_in

 is 0, for acquire_creds its 1. This is used to signal how the proxy file is

 to be used, 1 for input 0 for output.

 The logic for output is to use the provided input parameter, registry,

 environment, or default name for the proxy. Wgpi calls this multiple times

 as the options window is updated. The file will be created if needed.

 The logic for input is to use the provided input parameter, registry,

 environment variable. But only use the default file if it exists, is owned

 by the user, and has something in it. But not when run as root.

 Then on input if there is a proxy, the user_cert and user_key are set to

 use the proxy.

 Smart card support using PKCS#11 is controled by the USE_PKCS11 flag.

 If the filename for the user key starts with SC: then it is assumed to be

 of the form SC:card:label where card is the name of a smart card, and label

 is the label of the key on the card. The card must be using Cryptoki

 (PKCS#11) This code has been developed using the DataKey implementation

 under Windows 95.

 This will allow the cert to have the same form, with the same label as well

 in the future.

Bibliography

http://www.globus.org/security/environment.html1.
Globus Toolkit Security: Environment Variables.

