Venue-based Shared Data Store

Robert Olson

February 3, 2003

Introduction

In [1] we discuss a design for a flexible datastore intended for use as the backing store for the Access Grid. However, there is a place for a simplified interface to a shared data store where some of the requirements are relaxed. We describe such a simplified data store in this document.

[image: image1.emf]Description

The AG 2.0 client user interface provides a simple list of data that is present in the venue.

This data has a quite simple structure:

· Single-level list of files; no directory hierarchies

· No duplicate names allowed

The user interface provides the following operations:

· Doubleclicking on a filename in the Data section causes the file to be downloaded to a local cache directory and invoked with the default system mechanism for that file type

· Dragging a file from the UI to a local file browser causes the file to be downloaded and saved to that location.

· Right-clicking on the file provides options for opening and downloading.

Data Model

The venue itself stores a set of data descriptors. These descriptors contain metainformation about each individual data object, as well as information on the mechanisms available to transfer the data from its current location to a client interested in actually obtaining the data.

The data itself can either be stored “in” the venue; that is, in a data storage engine that is collocated with the venue; or, it can be stored in a server external to the venue. Such a server might be a client-based data store, a standard web server, or a special-purpose data device such as a scientific instrument or a large-scale storage device.

File uploads to the data storage engine that is collocated with the server utilize a Venue method call that sets up an upload to the server, handles the reception of the data, and adds a descriptor to the venue for the new data item.

Data Descriptors

A data descriptor contains metainformation about a data object. This information includes the following:

· name. The name of the data object. This name is displayed in file listing in the venue, and must be unique among the files in the venue.

· size. The size of the file in bytes.

· checksum. The MD5 checksum of the file.

· owner. The DN of the owner of the file.

· location. The location of the file. This is a list of tuples, each of which is a location descriptor (described below).

· ACL. The Access Control List for the file (described below).

Data descriptors are passed over the wire as SOAP structs, using the emboldened names above as tag names.

Location Descriptor

A location descriptor defines the mechanisms by which a file or other data item can be obtained by a client. It is a tuple of the following form:

(download-mechanism, download-information)

The download-mechanism is a string defining a particular mechanism by which the data item can be downloaded. We currently define the following mechanisms:

· HTTP-GET: the file can be downloaded using the HTTP protocol. In this case, download-information contains the URL to the file.

· GASS: the file can be downloaded using the GASS protocol. In this case, download-information is the tuple (file-URL, server-identity), where file-URL is the GASS URL to the file, and server-identity is the DN of the identity the server is using (required for the client to authenticate the server for the transfer).

Access Control List

Each data has an associated access control list.

An access control list is a list of access control entries.

Each access control entry is a tuple (permission, principal-list).

Permission is one of the following permissions:

· read: Access allows the user to download the file.

· write: Access allows the user to overwrite or delete the file.

Principal-list is a list of principals, which are each either (“user”, user-identifier) or (“role”, “role-identifier”).

Venue API

A client of the Venue receives an initial listing of the data present in the venue when it invokes the Enter method on the Venue service, and is returned a list of data descriptors in the returned structure. The Venue provides the additional methods for manipulating data objects.

AddData(descriptor)

Add descriptor to the set of data in the venue. The name contained in the descriptor must be unique in the Venue, otherwise an exception is thrown.

RemoveData(name)

Remove the data corresponding to name from the venue. If this data was uploaded to the Venue and resides in the Venue data store, the data file will be deleted from the data store.

GetUploadDescriptor(filename)

Return the descriptor to be used to allow the upload of a new file to the Venue. This descriptor defines to the client the upload mechanisms available to the client (GASS, HTTP PUT, etc). This call also prepares the Venue for the upload by the client.

File Uploads

The format of an upload descriptor is a tuple (descriptor-type, descriptor-data).

When the file is actually uploaded, the server will add it to its set file set, and create a descriptor for the file that includes information on the original owner of the file, its size, checksum, etc.

The data that is uploaded is assumed to be a tar format file. We make this assumption because we require both the actual file to be uploaded as well as the file descriptor, and we require that a file upload is an atomic operation.

The tar file must contain a file named MANIFEST which is a Python ConfigParser-formatted file that has one section for each data file in the tar file. The data in these sections corresponds to the information in the file descriptor. It includes the MD5 checksum of the file, which the upload engine will verify when the file transfer is complete.

Python implementation note

It may seem at first to be an unnecessary restriction to use tar-format files for the upload, but they fulfill the requirement of bundling multiple files with their description into a single transferable object without requiring additional protocol overhead. In the Python implementation, it is possible to use the tarfile module to handle the creation and reading of the tar format transfers without first saving them to local disk.

The tarfile module is slated for inclusion in the Python standard library in Python version 2.3. It is currently available for download from

http://www.gustaebel.de/lars/tarfile/

Implementation Details

The data descriptors for the data in the venue are stored inline in the data structures in the Venue object (Venue.py), using the accessors provided there.

The Venue-local data storage is implemented by the Python object VenueDataStorage. This object has the following interface:

VenueDataStorage(pathname)

Constructor. Creates a new data storage object, storing the local files in the directory pathname. If pathname does not exist, throw an exception.

GetUploadDescriptor()

Return the upload descriptor for this venue data store.

GetDownloadDescriptor(filename)

Return the download descriptor for this file.

DeleteFile(filename)

Delete filename from the data store.

1.
Olson, R., Virtual Venues Shared Data Store: Architecture and Design Notes. 2003.

