Access Control

Each file and diretory has an access control list. There are different options on each.

Files:

read: Access allows the user to download the file.

write: Access allows the user to overwrite or delete the file.

Directories:

list: Access allows the user to list the contents of the directory.

upload: Access allows the user to upload a new file into this directory. If the file already exist, he must have write access to the file.

write: Access allows the user to delete or rename files, or to create new directories.

read: Access allows user to read files in the directory.

administer: Allows user to change access to the directory or contents of the directory

Note that these access rights are for external users coming through the web services interface. The local user (the venue server process itself, the client running a transient filestore) has complete control through the local datastore API.

ACL use-cases:

(A)
User uploads a file.

User must have upload perms on the directory. When the file has been transferred, the user is given write permission on it. Read permission on the file is set to “inherit”, which means that read access is inherited from the ACL of the containing directory.

(B)
User creates a directory.

User must have write access to the containing directory. The new directory is created with permissions copied from the containing directory. The user is granted administer privileges on the new directory.

(C)
User uploads a directory.

The new directory is created as in (B), then each file uploaded as in (A). If the user is uploading an entire directory hierarchy, the empty directory hierarchy is created first, then the files uploaded.

(D)
Permissions for a venue filestore

A per-venue file store will have directories with list, upload, read, write access given to the users of the venue (via an indirection mechanism in the datastore). administer privs go to the owner of the venue.

(E)
Permissions for a per-client transient filestore.

A transient filestore will have directories with list and read permissions given to the current users of the venue (via an indirection to the venue client. If the user desires, he could allow transfers by opening upload or write permission to the datastore.

ACL API

ACLs are represented as Python objects.

ACL is the class from which specific ACL classes are derived. It defines the following constants, representing the possible access rights:

ACL.read

ACL.write

ACL.list

ACL.upload

ACL.administer

It also defines the following special values for rights:

ACL.indirect

ACL.inherit

ACL.none

The value for a right is either one of the values above, or a python list containing the Distinguished Names of the users to whom access is granted.

Access control model. (Role-based model, thoughts derived from the way that Zope handles access control).

See

http://dev.zope.org/Wikis/DevSite/Projects/ComponentArchitecture/SecurityFramework
for more on the Zope model for roles, permissions, etc.

--

Some thoughts on formal models of access control.

In [1] the authors discuss a formal model for role-based access control (RBAC). The full power of RBAC may not be necessary for Access Grid purposes (currently: in the future it might well be) but it provides a useful context and vocabulary for discussing access control in the AG context.

The basic abstractions are as follows.

Role. A role is a set of job functions.

In the AG, one role we clearly have is “Current venue member”. Other roles may include “authenticated user”, “Administrator”, “Biogrid participant”.

Roles are named with simple strings. They are uninterpreted by the access control system.

User. A user is a person. A person is represented to the Access Grid by a piece of client software, which acts as the user’s agent to the rest of the system.

Subject. A subject is a user’s representation within the Access Grid software.

Permission. A permission is an approval of a particular mode of access to one or more objects in the system.

In the AG context permissions are represented as simple strings. For instance, the data store defines the following permissions:

ds.read

ds.write

ds.list

ds.upload

ds.administer

Permissions are also treated as uninterpreted symbols to a large extent.

Operation. An operation represents a particular mode of access to a set of one or more protected RBAC objects

Architectural Notes

A subject is represented by its authenticated Distinguished Name.

Roles and Permissions are represented by simple uninterpreted strings.

RBAC0 [2] defines the following relations:

· PA. Permission to role assignment relation

· UA. User to role assignment relation.

· Function user maps a subject to a user.

· Function roles maps a subject to a set of roles.

At the fine grain access control level, each file and directory is associated with an access control tuple. From the RBAC/Web design document: [3]
The W3 ACL file is used to define which roles are permitted to perform which operation on which files:

.RBAC_acl

Each line of the W3 ACL file has the format:

<filename wildcard template> : <op list> : <role list>

Users which have any of the roles in <role list> in their ARS may perform all methods in <op list> on each file which satisfies <filename wildcard template>. The .RBAC_acl files reside on on each server where RBAC/Web is installed.
Abstractions

We will use the following abstractions in the AG access control system:

User. A user is a person.

Subject. A subject is the manifestation of a user in the software system. The AG software provides a means by which a user can authenticate himself with the system to make available a subject that represents the user.

Role. A role defines a class of allowed access to a set of operations.

Object. An object is a resource to be protected.

Operation. An operation, when invoked, causes data to flow to or from an object or causes the consumption of the resource.

Permission. A permission is the privilege to perform an operation on an object.

In the access control literature, a subject is often named using the given name of the person to which the subject applies. This works in the traditional environment in which these access control conventions are used; that is, for limiting access to files or database tables or web pages to subsets of an organization’s members or affiliates. In the case of the Access Grid, however, the subjects concerned can come from a much larger population whose members names we may not know a priori.

For our purposes, then, we need to more precisely define how subjects are named. There may be multiple mechanisms available for this naming, corresponding to the various authentication schemes that may be supported by the system. The primary means of authentication is via the use of X.509 certificates. These certificates provide a Distinguished Name that identiies the subject of the certificate. This, then, would be a reasonable name to use for identify subjects thus authenticated.

We may also want to provide a simpler authentication mechanism commonly used by web sites today, a username/password scheme. Using this mechanism, it is reasonable to identify subjects using their assigned username (this would likely be their email address).

A subject is named by a tuple (NameType, Name, AuthenticationInfo).

Components

The access control subsystem in the AG Virtual Venues system

Bibliography

1.
Ferraiolo, D.F., J.F. Barkley, and D.R. Kuhn, A role-based access control model and reference implementation within a corporate intranet. ACM Transactions on Information and System Security, 1999. 2(1): p. 34-64.

2.
Sandhu, R.S., Role-Based Access Control, in Advances in Computers, M. Zerkowitz, Editor. 1998, Academic Press.

3.
Barkley, J., Design Documentation for Role Based Access Control for the World Wide Web (RBAC/Web). 1997.

