Goal: Log in once to an AG node, and have the following happen:

· Get logged into the Unix systems with the proper local account

· Get logged into the Windows system with the proper local account

· Have grid-proxy-init run to generate a proxy certificate that is available on all the hosts we want it to be

· Have a proxy certificate installed into the web browser on the display machine, for authentication with web servers using GSI

· Use this certificate for logins to VV servers

Login process:

· User logs into control machine, local username and password for encryption on private key.
· Login tool (modified gdm?) uses local username to find the private key for the grid certificate. Password checked against the passphrase on the private key. If it succeeds, we can go on. If it fails, login fails.
· Distribute the proxy cert to the other machines in the cluster. Gass? Gsiftp?
· Install the proxy cert into the web browser.
Questions:

· How do I turn a proxy cert into a certificate that can be installed in a browser?

· Answer:

· Create certificate request using Certificate Enrollment Control (CEnroll)

· Send to proxy holder

· Proxy signs it and returns certificate

· Install into cert store using CEnroll

· How does the proxyholder know I can have a proxy?

· MyProxy somehow?

[image: image1.png]Web Server

(Portal)

HTTPS

Web Browser

myproxy-server

Gsl

ser’s private key
& certificate

myproxy-init
myproxy-destroy

· Ah – use MyProxy protocol to snag a proxy onto the local machine (Web Server in that picture, but it’s really my machine)

· Then I can use CEnroll to create a request, sign it locally with the proxy, and dump it into the server

· How do I set up “node certificates” so that I can do site verification, instead of just user verification?

· Once I have a proxy, can I create all the proxies I want from it?

· Administrative tool: grid-mapfile generator that maps any allowed user (globus identity) to a possibly-generic local AG account. THIS may give us more of the single sign-in:

· Log into windows box (unavoidable for now)

· Start AG client, type myproxy password

· Retrieves globus proxy onto local machine

· Use that proxy to start environment on other machines in cluster

· Use that proxy to dump a proxy cert into the local browser

· Point the browser at the venues server

Tech

· gss_export_cred() gss_import_cred(): export and import credentials

AG process manager

· Starts on control machine when user logs in. This creates the processes on the other machines (event listeners, etc). Alternatively, it could be the single interface for process maintenance on the node as a whole. My concern is the latency involved in starting processes (7 seconds on experiments between moonbeam and ag-www)

Perl code for dumping out a certificate store. This uses the CAPICOM library from Microsoft, http://www.microsoft.com/downloads/release.asp?releaseid=30316.

use Win32::OLE;

use Win32::OLE::Const 'CAPICOM';

$which = CAPICOM_LOCAL_MACHINE_STORE;

$which = CAPICOM_CURRENT_USER_STORE;

$s = Win32::OLE->new("CAPICOM.STORE");

$s->Open($which,

 CAPICOM_MY_STORE,

 CAPICOM_STORE_OPEN_READ_ONLY);

$ncert = $s->Certificates->Count;

print "Have $ncert certs\n";

for ($i = 0; $i < $ncert; $i++)

{

 $cert = $s->Certificates->Item($i);

 $subj = $cert->SubjectName;

 $priv = $cert->HasPrivateKey;

 print " sn=$subj priv=$priv\n";

 open(O, ">out.crt");

 print O $cert->Export(CAPICOM_ENCODE_BASE64);

 close(O);

}

Perl code for importing a certificate into a certificate store

use Win32::OLE;

use Win32::OLE::Const 'CAPICOM';

$which = CAPICOM_LOCAL_MACHINE_STORE;

$which = CAPICOM_CURRENT_USER_STORE;

$s = Win32::OLE->new("CAPICOM.STORE");

$s->Open($which,

 CAPICOM_OTHER_STORE,

 CAPICOM_STORE_OPEN_READ_WRITE);

undef $/;

open(F, "proxy.crt");

$txt = <F>;

print "cert: $txt\n";

close(F);

$cert = Win32::OLE->new("CAPICOM.Certificate");

$cert->Import($txt);

$subj = $cert->SubjectName;

$priv = $cert->HasPrivateKey;

print "Imported: $subj priv=$priv\n";

$n = $s->Certificates->Count;

$s->Add($cert);

$m = $s->Certificates->Count;

print "Before: $n after: $m\n";

And we need this to start stuff up:

The following /etc/pam.d/xserver file allows any user listed in the file /etc/xserver-users to start the X server:

#%PAM-1.0

auth sufficient /lib/security/pam_rootok.so

auth sufficient /lib/security/pam_console.so

auth required /lib/security/pam_listfile.so \

 onerr=fail item=user sense=allow file=/etc/xserver-users

auth sufficient /lib/security/pam_permit.so

account required /lib/security/pam_permit.so

This is a bit of tech that we'd need for a node control daemon to start an X server to support media clients on a capture machine.

