Access Grid Virtual Venue: pyAG Service Core

8

Access Grid Virtual Venues

pyAG Services Core

Robert Olson

Mathematics and Computer Science Division

Argonne National Laboratory

Abstract

The pyAG Services Core is a library of Python code that provides application access to XMLRPC client and server libraries, with support for Globus security.
Table of Contents

21
Introduction

22
Requirements

23
Client Interface

33.1
class AG.services.xmlrpc.Client.Handle

33.1.1
Handle(url, authCallback = None, authCallbackArg = None)

33.1.2
get_url()

33.1.3
get_proxy()

33.2
Example

34
Service Provider Interface

64.1
class AG.services.xmlrpc.Server.ServerBase

64.1.1
run()

64.1.2
run_in_thread()

64.1.3
create_service(service_class, …)

64.2
class AG.services.xmlrpc.Server.Server

64.2.1
Server(port, auth_callback)

64.3
class AG.services.xmlrpc.Server.InsecureServer

64.3.1
Server(port, auth_callback)

74.4
class AG.services.xmlrpc.Service.Service

75
Security Architecture

76
Conclusion

87
References

1 Introduction

The pyAG Services Core is a library of Python code that provides application access to XMLRPC [1] client and server libraries, with support for Globus [2] security.
2 Requirements

The Services Core library addresses the following requirements.

· Transparent access to web services by client applications

· Protocol-neutral API for client- and server-side service implementations

· Support for Globus-based authentication and identification mechanisms

3 Client Interface

The client interface in this library is primarily targeted at making invocation of web services simple for the user. The primary interface the client uses is the Handle object. This object is initialized with the URL of the web service, and provides the mechanism for invoking web service methods.

3.1 class AG.services.xmlrpc.Client.Handle

3.1.1 Handle(url, authCallback = None, authCallbackArg = None)

Handle class constructor.

	url
	Service URL

	authCallback
	Authorization callback function.

	authCallbackArg
	Authorization callback function argument.

If an authorization callback is provided, it will be invoked each time a connection is made to the service. See Section XX for details on authorization callbacks.

3.1.2 get_url()

Returns the URL with which this handle was created

3.1.3 get_proxy()

Returns a proxy object for the service. This proxy is an instance of the standard library class xmlrpclib.ServerProxy

A ServerProxy instance has a method corresponding to each remote procedure call accepted by the XML-RPC server. Calling the method performs an RPC, dispatched by both name and argument signature (e.g. the same method name can be overloaded with multiple argument signatures). The RPC finishes by returning a value, which may be either returned data in a conformant type or a Fault or ProtocolError object indicating an error [3].

3.2 Example

The following example demonstrates invoking a method called get_value() on a service at the URL http://server.com/110:

from AG.services.xmlrpc import Client

handle = Client.Handle("http://server.com/110")

value = handle.get_proxy().get_value("param-name-3")

4 Service Provider Interface

The services core library is built upon two basic abstractions: the server and the service. A server encapsulates the network endpoint provided by the underlying transport mechanism. A service provides the binding between a service address (that is derived from the address of the corresponding server) and the user’s application code. Put differently, a server is a relatively heavyweight object; it consumes operating system resources (network port, security infrastructure). A service is a lightweight object consuming no operating system resources.

4.1 Servers

Functionality common to all types of servers are implemented in the ServerBase class. Transport-specific functionality is implemented in subclasses of ServerBase. This implementation provides the Server class, which implements Globus-based transport, and InsecureServer, which provides TCP-based transport.

Servers and services are each represented with a URL [Berners-Lee, 1998 #1]. The URL of a server is of the form:

<protocol>://<hostname>:<port>

The protocol is either “http” for insecure servers, or “https” for secure servers. The hostname is the hostname on which the service is executing. The port is the port on which the server is listening.

A service URL is based on the server URL, but contains a path component that uniquely identifies the particular service:

<protocol>://<hostname>:<port><path>

A server listens for incoming connections, and handles them as XMLRPC [Winer, 1999 #5] requests. These requests have the following form:

POST <path> HTTP/1.0
<HTTP headers>

<Body of XMLRPC call>

When a server receives a request, it parses the request and attempts to dispatch the request to the appropriate service. This service is determined by examining the path contained in the request; a dispatch table is consulted to map the path to the instance of a service object. If an appropriate object is found, the request is passed to the service object for execution, and the result of the execution of the request returned to the caller.

4.2 Services

A service defines one or more XMLRPC methods. Each method has a name that is mapped to a Python callable object, invoked when a request is dispatched to the service. The Service object defines mechanisms that allow convenient definition of this mapping from XMLRPC method to user code.

The lowest level mapping is provided by the register_function method on the Service object:

def GetValue(arg):

print “GetValue invoked”

return lookup_value(arg)

<create a service object “svc”>

svc.register_function(“get_value”, GetValue)

It is often useful to map XMLRPC methods to methods on a Python object. The use of a Python bound method is useful for this:

class HandlerClass:

def GetValue(self, arg):

return self.lookup_value(arg)

<create a service object “svc”>

handler = HandlerClass()

svc.register_function(“get_value”, handler.GetValue)

Since it is often the case that a service defines multiple XMLRPC methods, the register_functions method provides a convenient shorthand for registering multiple methods:

class HandlerClass:

def GetValue(self, arg):

return self.lookup_value(arg)

def SetValue(self, arg, val):

return self.set_value(arg, value)

<create a service object “svc”>

handler = HandlerClass()

svc.register_functions({“get_value”: handler.GetValue,

“set_value”: handler.SetValue})

In fact, since it is common to define a Python class whose main purpose is the implementation of a set of methods on a service, the services library provides a convenient mechanism for the definition of such service implementation classes.

A service implementation class must be derived from the class AG.services.xmlrpc.ServiceBase.ServiceBase. Each method that is to be the handler for an XMLRPC method must include the directive “xmlrpc_export_as: <xmlrpcname>” in its docstring:

class HandlerClass(AG.services.xmlrpc.ServiceBase.ServiceBase):

def GetValue(self, arg):

"""

xmlrpc_export_as: get_value

"""

return self.lookup_value(arg)

def SetValue(self, arg, val):

"""

xmlrpc_export_as: set_value

"""

return self.set_value(arg, value)

Service implementation objects are created in a manner similar to the basic service objects. Note that the standard object constructor is not directly invoked by the user; the Server object acts as a factory that creates new services:

svc = server.create_service(HandlerClass, <constructor args>)

4.3 Service Definitions

The services core library defines a service definition document format. Service definitions are a high-level description of services, their operations, and the arguments required by these operations. A service definition is an XML document which conforms to the service definition schema. The following constructs are defined by this schema:

· A service is a named set of operations

· An operation is an individual entrypoint to a service. It has zero or more arguments.

· An argument has a name and type.

A sample service definition follows:

<Service name=”SampleService”>

<Operation name=”get_value”>

<Argument name=”key” type=”string”/>

<ReturnValue type=”string”/>

</Operation>

<Operation name=”set_value”>

<Argument name=”key” type=”string”/>

<Argument name=”value” type=”string”/>

<ReturnValue type=”void”/>

</Operation>

</Service>

The services library provides a tool that will generate the server-side Python code that implements services as defined by the definition file. The generated Python code consists of two classes: a server implementation class that derives from ServiceBase, as discussed above, and a server stub class. The implementation class constructor expects to receive an instance of an implementation class as its only argument. The service itself is created in the same manner as the service implementation classes discussed above:

impl = HandlerClassImpl()

svc = server.create_service(service_gen.SampleService, impl)

4.4 class AG.services.xmlrpc.Server.ServerBase

4.4.1 run()

Runs the server. This call will not return.

4.4.2 run_in_thread()

Runs the server in its own thread. This call returns immediately.

4.4.3 create_service(service_class, …)

	service_class
	Python class object to be instantiated for the new service. Any additional arguments to the create_service() call will be passed to the service_class constructor.

	Return value
	Instance of service_class, bound to the Server.

Creates a new service that is bound to this server. An instance of service_class will be created and registered with the server as the target for any incoming RPC calls.

4.4.4 create_service_object()

	Return value
	Instance of AG.services.xmlrpc.Service.Service, bound to the Server.

Create a new service object bound to this server.

4.5 class AG.services.xmlrpc.Server.Server

Server is a Globus-based implementation of the server abstraction.

4.5.1 Server(port, auth_callback)

	port
	Network port on which to listen. If port is 0, the system will pick an unused port.

	auth_callback
	Authorization callback function.

Create a new server listening on the given port. If auth_callback is given, use that as the Globus authorization callback.

4.6 class AG.services.xmlrpc.Server.InsecureServer

InsecureServer is a TCP-based implementation of the server abstraction.

4.6.1 Server(port, auth_callback)

	port
	Network port on which to listen. If port is 0, the system will pick an unused port.

Create a new server listening on the given port.

4.7 class AG.services.xmlrpc.Service.Service

A Service provides the binding between a network endpoint and the application code being exposed via the service interface.

4.7.1 Service()

The Service constructor should not be used by user code; Service object instances are only created by Server instances.

4.7.2 get_handle()

	Return value
	The URL corresponding to this service.

Returns the URL for this service.

4.7.3 register_function(function, name, pass_conn_info)

	function
	Python callable object to be bound to an XMLRPC method

	name
	XMLRPC method name to bind to function

	pass_conn_info
	If nonzero, the first argument passed to function will be a connection information object with data about the client making this RPC call.

The register_function method creates a mapping between the XMLRPC method <name> and the Python callable object <function>. Incoming XMLRPC method invocations for <name> will cause <function> to be invoked, and the return value of <function> to be passed as the XMLRPC return value.

4.7.4 register_functions(function_dict, pass_conn_info)

	function_dict
	Python dictionary. Keys are XMLRPC method names, values are Python callable objects

	pass_conn_info
	If nonzero, the first argument passed to each function registered will be a connection information object with data about the client making this RPC call.

The register_functions method is a convenience method for registering multiple functions at once. For each key/value pair in the dictionary, register_function is invoked.

5 Security Architecture

6 Conclusion

7 References

1.
Winer, D., XML-RPC Specification. 1999.

2.
Butler, R., et al., A National-Scale Authentication Infrastructure. IEEE Computer, 2000. 33(12): p. 60-66.

3.
Rossum, G.v. and F.L.D. Jr., Python Library Reference. 2002.

Appendix: Service Definition Schema

<?xml version="1.0" encoding="utf-8"?>

<xsd:schema xmlns:tns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name="DocumentationType">

 <xsd:sequence>

 <xsd:element name="Documentation" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ArgumentType">

 <xsd:sequence>

 <xsd:element name="Documentation" type="DocumentationType"/>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="type" type="xsd:string"/>

 </xsd:complexType>

 <xsd:complexType name="ReturnValueType">

 <xsd:sequence>

 <xsd:element name="Documentation" type="DocumentationType"/>

 </xsd:sequence>

 <xsd:attribute name="type" type="xsd:string"/>

 </xsd:complexType>

 <xsd:complexType name="OperationType">

 <xsd:sequence>

 <xsd:element name="Documentation" type="DocumentationType"/>

 <xsd:element name="Argument" type="ArgumentType"/>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string"/>

 </xsd:complexType>

 <xsd:complexType name="ServiceType">

 <xsd:sequence>

 <xsd:element name="Documentation" type="DocumentationType"/>

 <xsd:element name="Operation" type="OperationType"/>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string"/>

 </xsd:complexType>

 <xsd:element name="Service" type="ServiceType"/>

</xsd:schema>

DRAFT: Please Do Not Distribute

