Futures Laboratory Project Process 1.0

Futures Laboratory Project Process 1.0
Overview

Every project the Futures Laboratory undertakes has the same general structure. This structure is driven by the project vision; each project varies in size and scope. Some projects, like the Access Grid have a long term vision, which require multiple development iterations. This project process has some critical attributes that are illustrated in Figure 1, but are worth explaining in more detail. The project vision gets solidified into a project master plan, which divides up the vision into one or more development cycles. The project master plan can (and probably will) change over time adjusting to the dynamic nature of the project vision. These changes are integrated into the project plans for each development cycle.
The project vision is the driving force behind the effort. It states the highest level goals, identifying how obtaining those goals will provide a solution to a problem, higher value than a current solution, or creates opportunities for new endeavors. This vision process captures enough detail to identify common applications for the project, in enough detail to enumerate the unique and common aspects of the problems.

[image: image1.emf]Architecture Phase

Design and

Prototyping Phase

Implementation

Phase

Project Master Plan

Project Vision

1..N Separate

Sub Projects

Version 1.0 Project Plan

Version 1.0 Architecture

A

D

P

P

I I

I I

I I

A

D

P

P

I I

I I

I I

Version 2.0 Project Plan

Version 2.0 Architecture

A

D

P

P

I I

I I

I I

A

D

P

P

I I

I I

I I

A

D

P

P

I I

I I

I I

...

...

Team

Work

Individual

or Team

Work

Figure 1: Overall structure of a Futures Laboratory project. The overall vision and plan drive an iterative process of architecting, designing, then building each of which should increase the functionality of the previous.

Then the project master plan further analyzes the applications of the vision, the set of unique components to the applications, and derives use cases. These use cases are put together in order of dependence and a timeline is generated that shows a roadmap for the project. This roadmap is broken up into discrete portions identified as development cycles, which are labeled with major version numbers.

The project development cycle structure is described by Figure 2. It includes architecture, design, implementation, testing and release phases that bring a single development cycle from concept to deliverables. The project development process is described by the flowchart in Figure 3. Project development cycles start with a project plan which is more concrete than the project master plan and includes specific requirements and deliverables for the project. Along with the project plan is a conceptual architecture which identifies major architectural pieces, provides a description of how the pieces work together to satisfy the requirements, and breaks the project into sub-projects
Architecture

The architecture process is the takes goals, the requirements and deliverables of the project and builds a conceptual solution. The solution should satisfy the requirements and, if designed and implemented well, produce the deliverables. If a project is large enough it may require an overall architecture, which identifies sub-projects in enough detail that an architectural document for each sub-project can be written to guide a sub-project through the design and implementation process. Successfully architecting sub-projects will require discussions, since sub-project parts will interact with other parts in the larger system. The architecture phase should be done by the project team as a group to ensure the greatest amount of cohesion between different parts of the architecture.
Design

When the architecture is complete, design begins. The design process should take the architecture and produce a set of design documents that completely specify an implementation that satisfies the architectural requirements. During the process of writing design documents prototypes are used to investigate solutions to design questions. The design phase of the project should be done as a team to ensure compatibility between parts, interfaces match and that the design is a complete solution.
Implementation

Once design documents are complete and satisfy the project requirements, the process of developing the software begins. There are two products of implementation, well documented source code and a set of tests that verify the correctness of the source code. In order to streamline the development and later release, it is suggested the developer writes inline documentation that can be automatically processed into the developers’ reference documentation. In order to automatically verify the code correctness the tests produced must also include a criterion for success. Additionally, there should be higher level tests that verify that combinations of modules satisfy the requirements of the project; these higher level tests may need a human in the loop.

[image: image2.emf]I

A1

I

A2

I

A3

I

B1

I

B2

I

B3

I

C1

I

C2

I

C3

I

D1

I

D2

I

D3

A B C D

Overall Architecture

Arch A Arch B Arch C Arch D

Design A Design B Design C Design D

I

A1

I

A2

I

A3

I

B1

I

B2

I

B3

I

C1

I

C2

I

C3

I

D1

I

D2

I

D3



Development Cycle

concept is defined:

What are we trying to

achieve?



Sub-projects are

identified



Each sub-project is

elaborated in more

detail



Each sub-project is

designed



Implementation

components are

identified



Implementation

Figure 2: Development Cycle Structure, showing how architecture, design, and implementation are related to each other for an entire project and sub-projects.

Testing

The testing phase verifies the module level correctness of the code and the overall ability of the code to satisfy the original requirements. Testing occurs as soon as code is available from the implementation phase. The results of the testing should be available to the development team so effort can be focused on the critical issues blocking completion of the project.
Release Engineering

At some point in time, the code is release engineered, then packaged for distribution. If the implementation teams communicate effectively and reduce the pieces of prerequisite software, the release engineering can be done quickly and cleanly. One of the project requirements should include the target platforms to make those decisions easier.

[image: image3.emf]Implement

Software

(with inline source

docuementation)

Design

(prototype as necessary)

Write

Architecture

Document

Release

Engineer

Distribute

Architecture

Document(s)

Design

Document(s)

with

Interface

Specifications

Final

Release

Tests

Code

Automatic

Compilation

and Testing

Code

Correctness

Report

Requirements

Satisfied?

NO

Working?

YES

NO

YES

Code (including testing

code) lives in a CVS

Repository that is world

readable, but only AG

Developers have write

access.

Leverage Open Source tools:

CVS - Collaborative Code Repository

Tinderbox - Automatic code testing and reporting

Bugzlla - Project Tracking (bugs, features, deliverables)

Figure 3: A flowchart showing the process that a development cycle follows to generate deliverables for a project.

This document is an Futures Laboratory Internal Document, please send questions to fl-info@mcs.anl.gov.

Confidential
Page 4
9/5/2002

_1092216057.vsd
Text�

Project Master Plan�

Project Vision�

A�

D�

A�

P�

D�

P�

I�

I�

I�

I�

I�

I�

P�

I�

I�

I�

Team
Work�

I�

I�

Individual
or Team
Work�

I�

Version 2.0 Project Plan�

Version 2.0 Architecture�

A�

Version 1.0 Project Plan�

D�

Version 1.0 Architecture�

P�

P�

I�

I�

I�

I�

I�

I�

A�

D�

P�

P�

I�

I�

I�

I�

I�

I�

A�

D�

P�

P�

I�

I�

I�

I�

I�

I�

...�

...�

Architecture Phase�

Design and Prototyping Phase�

Implementation Phase�

1..N Separate
Sub Projects�

P�

_1092556301.vsd
�

�

�

�

�

�

Architecture
Document(s)�

Write
Architecture
Document�

Distribute�

Release
Engineer�

Design
(prototype as necessary)�

Implement
Software
(with inline source docuementation) �

Design
Document(s)
with
Interface
Specifications�

Code�

Final
Release�

Requirements
Satisfied?�

Automatic
Compilation
and Testing�

Tests�

Code
Correctness
Report�

NO�

Working?�

YES�

NO�

YES�

Code (including testing code) lives in a CVS Repository that is world readable, but only AG Developers have write access.�

Leverage Open Source tools:
CVS - Collaborative Code Repository
Tinderbox - Automatic code testing and reporting
Bugzlla - Project Tracking (bugs, features, deliverables)�

_1092208917.vsd
Overall Architecture�

Arch A�

Arch B�

Arch C�

Arch D�

A�

B�

C�

D�

Design A�

Design B�

Design C�

Design D�

I A1�

I A2�

I A3�

I B1�

I B2�

I B3�

I C1�

I C2�

I C3�

I D1�

I D2�

I D3�

I A1�

I A2�

I A3�

I B1�

I B2�

I B3�

I C1�

I C2�

I C3�

I D1�

I D2�

I D3�

Development Cycle concept is defined: What are we trying to achieve?
Sub-projects are identified�

Each sub-project is elaborated in more detail�

Each sub-project is designed
Implementation components are identified�

Implementation�

