Access Grid Virtual Venue: pyAG Venues Core

11

Access Grid Virtual Venues

pyAG Venues Core

Robert Olson

Mathematics and Computer Science Division

Argonne National Laboratory

Abstract

We discuss the implementation plan for a Virtual Venues implementation based on the pyGlobus toolkit with XMLRPC messaging.
Table of Contents

31
Introduction

32
Requirements

32.1
Implements architecture as defined in conceptual architecture document

32.2
Security

42.3
Service interface

42.4
Portability – reference implementation

43
Definitions

43.1
Handle

43.2
Credential

43.3
Certificate

43.4
Distinguished Name (DN)

53.5
Service

53.6
Service implementation

53.7
Hosting environment

54
System Architecture

54.1
Venues Service Interface

64.2
Venues Service Implementation

64.2.1
Enter

64.2.2
Refresh state

64.2.3
Exit

74.2.4
Probe

74.2.5
Make connection

74.2.6
Add service / Remove service

74.2.7
Keep alive

74.3
Lifecycle Considerations

74.4
Bootstrapping, Persistence, and Backing Store

84.5
pyAG Foundations

85
Security Architecture

85.1
Credentials

95.2
Authorization Decisions

11Query Access

11Add access / Remove access

11Set policy mode

116
Conclusion

127
References

13Appendix A: Venue Interface Specification

16Appendix B: Venue Interface Documentation

16Operation enter(credential_list, description, preferences)

16Operation refresh_state(entry_id)

16Operation exit(entry_id)

16Operation probe()

16Operation make_connection(target_venue, target_description)

17Operation service_add(service_list)

17Operation service_delete(service_list)

17Operation service_keepalive(service_list)

17Operation keepalive(entry_id)

1 Introduction

In this document we discuss the design of a basic server capable of hosting multiple Virtual Venues. The implementation is based on the pyAG toolkit [1], a toolkit written in Python that provides a basis for building service-based infrastructures. We intend this server to be part of the reference implementation of the Access Grid suite of software. As such, it will track the progress of the documents specifying the Access Grid components.

2 Requirements

The Virtual Venue architecture addresses the following requirements.

2.1 Implements architecture as defined in conceptual architecture document

In [2] we discuss the high-level architecture of the Access Grid Virtual Venue. In particular, each venue must manage the following data elements:

· Users present

· Media and Data objects

· Connections to other Venues

· Service Registry

It must also implement the following basic operations on the Venue:

· Enter

· Refresh state

· Exit

· Probe

· Make connection

· Add service / Remove service

· Keep alive

We will discuss these data elements and operations in detail.

2.2 Security

The Venue must provide all its operations in a secure environment. That is, interactions with the Venue take place over secure transport mechanisms, and authentication and authorization mechanisms are supported where appropriate. The Venue must also provide protection, as much as is reasonably possible, against intended or unintended denial of service attacks.

2.3 Service interface

The interface to the Venue is to be service-based. We define a service as a software module that represents a resource, and is exposed through a network-accessible API. In this case, the resource is the Venue itself, and the API expresses the set of operations defined in section 2.1.

2.4 Portability – reference implementation

As this is a reference implementation, we require that it be as portable as possible and to favor understandability and modifiability over tight performance optimization. Further discussion here ?
3 Definitions

In this section we define some of the terms used elsewhere in this document. The cryptographic definitions are paraphrased from [3].

3.1 Handle

A handle is a URI [4] that serves as a unique name for a service. We distinguish between persistent handles, which have names that persist between invocations of a service, and transient handles, whose names may change between invocations of a service. This notation is weakly derived from the distinction between Grid Service Handles and Grid Service References, as defined by the Open Grid Services Architecture (OGSA) [5]. In this implementation we do not plan to implement these abstractions as rigorously as OGSA does; in part because we anticipate moving the Virtual Venue infrastructure to an OGSA foundation when that technology has matured.
3.2 Credential

A credential is a document issued by a trusted party that makes an assertion about the identity of a subject or about attributes of a subject. In this implementation, credentials are implemented as X.509 certificates [6].

3.3 Certificate

An X.509 certificate is issued by a certificate authority (CA). It contains the name of the issuer (the CA, for an identity certificate), the distinguished name of the subject (the entity to which the certificate applies), a specification of the validity period of the certificate, the public key of the subject, and the signature of the CA.

3.4 Distinguished Name (DN)

A distinguished name or DN is the identifier associated with an entity in an X.509 certificate. A DN for a user would look something like this:

O=Grid, O=Globus, OU=mcs.anl.gov, CN=Bob Olson

3.5 Service

A service is a software module that represents a resource, and is exposed through a network-accessible API. This implementation exposes its service API through the XMLRPC [7] remote procedure call mechanism.

3.6 Service implementation

A service implementation is the program code that provides the functionality of a service.

3.7 Hosting environment

A hosting environment provides the computational environment in which one or more service implementations execute. The hosting environment is responsible for managing service bootstrapping, configuration management for service implementation, and so on. In this implementation, the hosting environment consists of custom Python executables each of which load the service implementations for a particular hosted service or set of services.

4 System Architecture

In this section we discuss the key components of this Virtual Venue implementation, how they interact with each other and the outside world, and how they are bootstrapped.

4.1 Venues Service Interface

The XMLRPC interface to the Venues service is defined by an AGSD (Access Grid Service Definition) file [8]. See Appendix A for the current AGSD specification, and Appendix B for the API documentation for that specification.

The methods in this interface follow directly from the operations defined in [2]. We define the following conventions for the common arguments used.

A description is an XMLRPC structure mapping tag names to values. Names are strings, values can be any valid type.

An entry_id is a string that uniquely defines a client’s connection to the Venue. Any calls that modify client-specific state in the server will require an entry_id.

Handles are URIs passed as strings.

A service list is an array of service identifiers. Each service identifier is a structure with the following elements:

	service_id
	Handle identifying the service

	service_description
	Description structure for this service.

4.2 Venues Service Implementation

The Venues service implementation is centered about the Python class VenueImplementation. An instance of this class is created for each Venue service created (see section 4.3 for details on lifecycle management). The VenueImplementation class maintains data structures corresponding to each of the data elements defined in section 2.1. These data structures are summarized below.

	Data Element
	Data Structure
	Use

	Users Present
	class VenueUsers
	The VenueUsers class maintains a list of current users in the Venue. It is responsible for tracking the soft-state registration times for the user, processing the keep alive messages.

	Media and Data Objects
	class ObjectManager
	The ObjectManager keeps track of the objects that the Venue treats as opaque.

	Connections to other venues
	class VenueConnections
	The VenueConnections class maintains the list of connections to other venues. For each connection, it records the handle of the Venue and a description of the target venue.

	Service registry
	class ServiceRegistry
	The ServiceRegistry maintains a soft-state registry of service handles and descriptions for registered services.

Given these data structures, it is straightforward to map the implementation of the service methods for the Venue service.

4.2.1 Enter

The enter operation verifies that the client attempting entry is allowed into the Venue. If allowed, the VenueUsers instance is given the Distinguished Name of the client.

4.2.2 Refresh state

The refresh state operation verifies that the caller is currently present in the room. If so, it queries all data elements for their state and returns that accumulated state to the caller.

4.2.3 Exit

The exit operation verifies that the caller is currently present in the room. If so, it invokes the VenueUsers instance to remove the client and tear down any associated state.

4.2.4 Probe

The probe operation verifies that the client attempting the operation is allowed to probe. If so, it queries all data elements for the state allowed for probes and returns that accumulated state to the caller.

4.2.5 Make connection

The make connection operation verifies that the client attempting the operation is allowed to create new connections. If so, the connection information is passed to the VenueConnections instance for processing.

4.2.6 Add service / Remove service

The add and remove service operations verify that the caller is currently present in the room. Do we need this requirement or is it a different access policy? If allowed, the service information is passed to the ServiceRegistry for handling.

4.2.7 Keep alive

The keep alive operation verifies that the invoking client is currently present in the room. If so, it invokes the VenueUsers instance to update the client’s state.

4.3 Lifecycle Considerations

Creation of a new Venue involves the creation of two Python objects: the Venue service object and the VenueImplementation that provides its functionality. This implementation defines a VenueFactory class to encapsulate the details of service creation.

The Venue architecture does not specify service-based lifecycle management mechanisms for Venues. A future extension to the architecture may include the definition of a Factory service interface for Venue services.

4.4 Bootstrapping, Persistence, and Backing Store

The persistence of Venues and their contents is crucial. This implementation of the Venue architecture uses a relational database as a persistent backing store for the Venues data. At the startup of the Venues service hosting environment, the set of Venue service being hosted must be created and initialized from the backing store.

This implementation performs this task with the aid of a bootstrapping utility that traverses the data in the backing store data to discover the Venues that must be created. For each venue in the set to be created, a Venue factory object is utilized to create a new Venue service. Local administrative methods on the VenueImplementation are invoked to set initialize the state of the data elements and to create the connections between the local Venues. When the initialization is complete, the Venue service is made available on the network.

Our initial implementation will utilize the Postgres database backend used in the current production Venues server. This database has tables that define the rooms, media channels, and connectivity between rooms (see Figure 1). We will initially only use the database to initialize the hosting environment at startup and to save its state at shutdown.

[image: image1.png]room ;
id
L @souce
descipion
channel channel_key
@ @
pot encuypion_key
W
bardhidh
media
fomat

Figure 1. Venue Database Schema

4.5 pyAG Foundations

The pyAG toolkit [1] is responsible for providing the service-based communications interface and for interfacing with the underlying Globus security mechanisms [9]. The pyAG toolkit exposes mechanisms for accessing the authentication information available from the Globus messaging, as well as mechanisms for managing the use of multiple identity certificates in the client.

5 Security Architecture

Security in the pyAG Venues infrastructure is based upon the mechanisms provided by the Globus Security Infrastructure [9] for identification, authentication, and authorization.

5.1 Credentials

Each user using a pyAG Venue must have a valid Globus identity certificate. For the initial implementation, each user must have his identity certificate residing locally on his computer and have created a valid Globus proxy certificate. We will relax this restriction in the future, most likely by integrating a network-based certificate proxy server such as MyProxy [10].

Each service must also have an identity certificate that is used to authenticate the service to its clients. The subject name in this certificate identifies the service; clients can the server certificate and well-known service names to authenticate servers.

5.2 Authorization Decisions

Authorization is the process by which a service determines whether a client is allowed access, based on the authenticated identity of the client. It is often useful to define the rules by which authorization is granted in a policy language. The definition and specification of policy languages is an active area of research in the community. For example, XACML [11] is an XML schema specification designed to express policy statements for a wide variety of information systems and devices. The Ponder policy specification language [12] provides a common means of specifying security policies that map onto various access control implementation mechanisms for firewalls, operating systems, databases and Java. The Generic Authorization and Access-control API (GAA API) provides a generic framework by which applications facilitate access control decisions and request authorization information about a particular resource [13]. Finally, the Community Authorization Service [14] provides a mechanism for the delegation of authorization decisions to a community-based service.

(The previous-work section can be expanded even more; Tapestry [15] is another system, and I’m sure there’s more. Akenti [16] of course).

Given the wide variety of authorization management tools and languages in the community, and that the actual authorization requirements in this initial version of the Virtual Venue implementation are fairly straightforward, we feel that at this point in the development effort it is likely overkill to delve deeply in any one of these fairly complex systems. Rather, we attempt to extract some of the key concepts from the field and implement a simple system that will work for our purposes. As our understanding of the detailed requirements for access control grows with experience in the system, and as these third-party implementations mature, we intend to expand the access control capability and flexibility by incorporating one or more of these third-party implementations.

The specific requirements that the Venue architecture demands include the following.

· Access control policies must leverage the identification and authentication mechanisms already in place in the Virtual Venue system

· Access control policies must support dynamic membership. Due to the highly interactive nature of an Access Grid session, it must be possible to easily and efficiently adjust the policy criteria.

· An access control policy needs to define access control to the policy itself, to allow for the dynamic adjustment of the policy.

· We do not require complex rule-based access control list policies. Rather, a simple default allow or deny policy with per-user allow or deny exemptions is sufficient.

A Venue implementation may require multiple different access control policies: a policy controlling who can enter, who can modify the structure of the Venue, who can probe the Venue for information, etc. For some of these access control policies it is required that modifications to the policy itself be controlled by an access control policy. As a result, there is the risk of endless recursion; the policies for a Venue must be grounded somewhere. Our initial inclination is that the ultimate holder of policy is the set of users that is designated to hold ownership of the room.

5.3 Access Control Policy Architecture

We may now define the components of an authorization policy as used in this Virtual Venue implementation.

A policy has the following data elements:

· Policy mode. This is either “Open” or “Closed”. An open policy allows any users to enter, except for those explicitly banned. A closed policy allows only those explicitly allowed in.

· Access List. This is the list of users who are allowed or denied access.

· Controlling Policy. This is another access control policy. Users that are authorized in the controlling policy are allowed to add or remove users from this policy, or to change the policy mode.

The Access List consists of a list of entries of the form

(UserDN, ExpirationTime, AccessFlag).

· UserDN is the distinguished name of the user that is allowed into the room.

· ExpirationTime is the time at which this ACL entry becomes invalid

· AccessFlag is either “allow” or “deny”, denoting that the specified user is either allowed to enter or denied from entry.

Operations on access policies include the following

5.3.1 Query Access

This operation evaluates whether the user whose identification is provided is allowed access according to this policy

5.3.2 Add access / Remove access

These operations add and remove access for the given user. Before allowing the changes to take effect, the controlling policy is first queried to determine whether the requesting user is allowed to change this policy.

5.3.3 Set policy mode

This operation changes the policy mode for this policy.. Before allowing the change to take effect, the controlling policy is first queried to determine whether the requesting user is allowed to change this policy.

5.4 Policy usage in the Virtual Venues

We anticipate the initial implementation will require the following policies to be instantiated:

· Ownership of the Venue

· Access to the Venue

· Access to administrative functions on the Venue (changing the name, description, adding connections, etc).

· Access to allow probing of the Venue for information

The ownership policy will be hardcoded at bootstrap time to include the predefined owners of the venue. These users can delegate administrative responsibilities as they desire.

6 Conclusion

7 References

1.
Olson, R., pyAG Toolkit: Core Services Layer. 2002.

2.
Futures Laboratory, Access Grid Virtual Venue. 2002.

3.
Glossary of Akenti Terminology.

4.
Berners-Lee, T., R. Fielding, and L. Masinter, RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax. 1998.

5.
Foster, I., et al., The Physiology of the Grid. 2002.

6.
Housley, R., et al., RFC 3280: Internet X.509 Public Key Infrastructure Certificate and CRL Profile. 2002.

7.
Winer, D., XML-RPC Specification. 1999.

8.
Olson, R., Access Grid Service Definition Reference. 2002.

9.
Butler, R., et al., A National-Scale Authentication Infrastructure. IEEE Computer, 2000. 33(12): p. 60-66.

10.
Novotny, J., S. Tuecke, and V. Welch. An Online Credential Repository for the Grid: MyProxy. in Proceedings of the Tenth International Symposium on High Performance Distributed Computing (HPDC-10). 2001: IEEE Press.

11.
OASIS eXtensible Access Control Markup Language (XACML). 2002.

12.
Damianou, N., et al. The Ponder Policy Specification Language. in Policy 2001: Workshop on Policies for Distributed Systems and Networks. 1995. Bristol, UK: Springer-Verlag LNCS.

13.
Ryutov, T. and C. Neuman. Representation and Evaluation of Security Policies

for Distributed System Services. in DARPA Information Survivability Conference Exposition. 2000. Hilton Head, South Carolina: IEEE.

14.
Perlman, L., et al., A Community Authorization Service for Group Collaboration. IEEE Workshop on Policies for Distributed Systems and Networks, 2002.

15.
Sheong, C.S., Tapestry: A centralized user management system, in JavaWorld. 2001.

16.
Johnston, W., S. Mudumbai, and M. Thompson. Authorization and Attribute Certificates for Widely Distributed Access Control. in IEEE 7th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises - WETICE ’98. 1998.

17.
Access Grid Workspace Docking. 2002.

Appendix A: Venue Interface Specification

Following is the AGSD for the Venue interface:

<?xml version="1.0" encoding="utf-8"?>

<Service name="Venue" xmlns="http://accessgrid.org/schema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xsi:noNamespaceSchemaLocation="agnew.xsd">

<Operation name="enter">

<Documentation>

 Enter the scope of the Venue.

 </Documentation>

<Argument name="credential_list" type="string[]">

 <Documentation>

 Credentials of this user.

 </Documentation>

 </Argument>

<Argument name="description" type="struct">

 <Documentation>

 Description of the user connecting to the venue.

 </Documentation>

 </Argument>

<Argument name="preferences" type="struct">

 <Documentation>

 User preferences.

 </Documentation>

 </Argument>

<ReturnValue type="struct">

 <Documentation>

 <p>

 If the entry fails, the following slots will be

 set in the returned structure:

 <table border="1">

 <tr>

 <td>entry_success</td><td>0</td>

 </tr>

 <tr>

 <td>entry_failure_message</td><td>Reason for failure</td>

 </tr>

 </table>

 </p>

 <p>

 If the entry succeeds, the following slots will be

 set in the returned structure:

 <table border="1">

 <tr>

 <td>entry_success</td><td>1</td>

 </tr>

 <tr>

 <td>entry_id</td><td>Identifier for this venue entry</td>

 </tr>

 <tr>

 <td>venue_description</td><td>Description of the venue</td>

 </tr>

 </table>

 </p>

 </Documentation>

 </ReturnValue>

</Operation>

 <Operation name="refresh_state">

 <Documentation>

 Return the current state of the venue.

 </Documentation>

 <Argument name="entry_id" type="string">

 <Documentation>

 The entry_id as returned by the <i>enter</i> operation.

 </Documentation>

 </Argument>

 <ReturnValue type="struct">

 <Documentation>

 The return value is the same as that of

 the <i>enter</i> operation.

 </Documentation>

 </ReturnValue>

 </Operation>

<Operation name="exit">

 <Documentation>

 Depart from the venue. Remove any information about the client

 from the venue's state.

 </Documentation>

 <Argument name="entry_id" type="string">

 <Documentation>

 The entry_id as returned by the <i>enter</i> operation.

 </Documentation>

 </Argument>

 <ReturnValue type="void"/>

</Operation>

 <Operation name="probe">

 <Documentation>

 Return the current state of the venue. Depending on the policy

 implemented in the venue, this operation may be invoked by

 an entity that has not entered the venue.

 </Documentation>

 <ReturnValue type="struct">

 <Documentation>

 The return value is the same as that of

 the <i>enter</i> operation.

 </Documentation>

 </ReturnValue>

 </Operation>

<Operation name="make_connection">

 <Documentation>

 Create a new connection from this venue to another venue.

 </Documentation>

 <Argument name="target_venue" type="string">

 <Documentation>

 Handle of the venue we are creating the connection to.

 </Documentation>

 </Argument>

 <Argument name="target_description" type="struct">

 <Documentation>

 Description of the target venue.

 </Documentation>

 </Argument>

 <ReturnValue type="void"/>

</Operation>

<Operation name="service_add">

 <Argument name="service_list" type="array"/>

 <ReturnValue type="void"/>

</Operation>

<Operation name="service_delete">

 <Argument name="service_list" type="array"/>

 <ReturnValue type="void"/>

</Operation>

<Operation name="service_keepalive">

 <Argument name="service_list" type="array"/>

 <ReturnValue type="void"/>

</Operation>

<Operation name="keepalive">

 <Documentation>

 Keep my connection to this venue alive. Must be invoked

 periodically by the venue client in order for it to

 remain registered as "present".

 </Documentation>

<Argument name="entry_id" type="string">

 <Documentation>

 The entry id as returned by the <i>entry</i> operation.

 </Documentation>

 </Argument>

<ReturnValue type="void"/>

</Operation>

</Service>

Appendix B: Venue Interface Documentation

Operation enter(credential_list, description, preferences)

Enter the scope of the Venue.

	Argument
	Type
	Documentation

	credential_list
	string[]
	Credentials of this user.

	description
	struct
	Description of the user connecting to the venue.

	preferences
	struct
	User preferences.

	Returned value
	struct
	If the entry fails, the following slots will be set in the returned structure:

entry_success

0

entry_failure_message

Reason for failure

If the entry succeeds, the following slots will be set in the returned structure:

entry_success

1

entry_id

Identifier for this venue entry

venue_description

Description of the venue

Operation refresh_state(entry_id)

Return the current state of the venue.

	Argument
	Type
	Documentation

	entry_id
	string
	The entry_id as returned by the enter operation.

	Returned value
	struct
	The return value is the same as that of the enter operation.

Operation exit(entry_id)

Depart from the venue. Remove any information about the client from the venue's state.

	Argument
	Type
	Documentation

	entry_id
	string
	The entry_id as returned by the enter operation.

	Returned value
	void
	

Operation probe()

Return the current state of the venue. Depending on the policy implemented in the venue, this operation may be invoked by an entity that has not entered the venue.

	Argument
	Type
	Documentation

	Returned value
	struct
	The return value is the same as that of the enter operation.

Operation make_connection(target_venue, target_description)

Create a new connection from this venue to another venue.

	Argument
	Type
	Documentation

	target_venue
	string
	Handle of the venue we are creating the connection to.

	target_description
	struct
	Description of the target venue.

	Returned value
	void
	

Operation service_add(service_list)

	Argument
	Type
	Documentation

	service_list
	array
	

	Returned value
	void
	

Operation service_delete(service_list)

	Argument
	Type
	Documentation

	service_list
	array
	

	Returned value
	void
	

Operation service_keepalive(service_list)

	Argument
	Type
	Documentation

	service_list
	array
	

	Returned value
	void
	

Operation keepalive(entry_id)

Keep my connection to this venue alive. Must be invoked periodically by the venue client in order for it to remain registered as "present".

	Argument
	Type
	Documentation

	entry_id
	string
	The entry id as returned by the entry operation.

	Returned value
	void
	

Room Admins: (closed)

	+Bob

	+Terry

Changers

(Bootstrap loader)

Probe Access: (open)

	-Igor

Changers

Changers

Room Entry Access: (open)

Changers:

(none)_�

Room users: (closed)

	+Jane

	+Bob

	+Ivan

	+Tom

DRAFT: Please Do Not Distribute

