Access Control in the Virtual Venues

The Globus communications subsystem provides the basic level of information needed in order to implement access control in Globus-enabled applications. When an application creates a GlobusIO connection to another application, there are several choices that can be made on the connection itself:

· The connection can be protected with GSSAPI (secure) or not

· On a GSSAPI-secured connection, the connection can be configured for message integrity only, or integrity and privacy (encryption)

· The connection can be configured to delegate the user’s credential to the remote process

Each connection also has a number of choices for the base-level authorization mode.

· The other process must be running under the same PKI credential as the connecting process

· The other process must be running under a specific PKI credential named by the caller (CAS uses this, where the name looks something like O=Grid/O=Globus/OU=mcs.anl.gov/CN=cas/moonbeam.mcs.anl.gov

· The other process must be running under a “host credential” that matches the hostname given in the connection.

· The Globus library invokes a user-defined callback function when the connection is in progress; the return value of the callback defines whether the connection is allowed to continue or not.

In the context of the Virtual Venues infrastructure, we must define the identities under which the various processes are executing. From that, we can derive the access control rules to be enforced by the VV software.

Each user will run under a user identity certificate issued by a trusted CA. At the beginning, these will be issued by the Globus CA and will have the form

/O=Grid/OU=Globus/OU=mcs.anl.gov/CN=Bob Olson

or will be issued by the Access Grid CA and have the form

/O=Grid/OU=Access Grid/OU=mcs.anl.gov/CN=Bob Olson

where the OU represents the organization the user is from, and CN is the user’s name.

The Venues server processes, on the other hand, will run with a Venues server specific host certificate. These will have the form

/O=Grid/OU=Access Grid/CN=vv/moonbeam.mcs.anl.gov

We can now define the baselevel rules for access control. We use the term “user” below to mean the client code that the user of an Access Grid node runs to connect to the Access Grid.

· When a user connects to a VV server at some hostname, the client code must check the VV host certificate against the hostname that was used to access that server. That is,

· The VV host certificate must come from a CA that the client trusts

· The VV host certificate must have the form
{CA Base}/CN=vv/{hostname}

· The VV server code will authenticate the client as well. In this case, the actual policy can be quite flexible. For a baseline, the following rules apply.

· The client must have a valid certificate issued by a CA that the VV server trusts.

We would like to enable clients to make use of multiple certificates. For instance, a user of an AG node might have his own identity certificate, and the node itself may have a host certificate. There may be another user in the node who can enter spaces that no others may enter.

The Globus infrastructure (due to the semantics of the underlying SSL protocol) only allows one certificate to be used per connection. If the client application has a number of certificates to choose from, one potential solution is to allow the client to make multiple connections, using its various certificates as needed. However, the server needs some mechanism to determine whether these various connections are from the same client.

Digression on implementation …

The current implementation uses an object wrapper around the URLs that specify the location of service instances:

url = "https://server:port/svcid"

handle = Client.Handle(url)

retval = handle.get_proxy().remote_method(arg1, arg2)

The get_proxy() method on the handle performs the binding between a certificate on the client and the remote peer, as specified in the URL.

Let us discuss for a moment the means of specifying certificates. Proving one’s identity using X509 certificates requires two pieces of information: the identity certificate itself, a document that binds information about the subject’s identity with the public key, and the private key corresponding to that public key. For each identity the client wishes to use, the software will need to identify the location of the files containing certificate and private key. For the standard Globus user proxy, the location is well known ($HOME/.globus/usercert.pem and userkey.pem).

We will represent these certificates with the Credential class in Python. A Credential is created from the certificate and private key files, and, in the case of proxies, will contain the chain of certificates used to create the proxy. A Credential also has the capability of creating a pyGlobus GSSCred object, suitable for inclusion in the creation of a GlobusIO attribute to specify the credential used create a server (to designate the identity of the server) or to create a connection to another process (to designate the identity of the process making the connection).

We can now outline a number of characteristics of the use of Credentials in the XMLRPC service environment.

· When the server (listener) for a service is created, it is always explicitly created using a Credential. This Credential identifies the server to the processes connecting to the server.

· All services that are created from a given server inherit that server’s identity.

· When a service is bound to a registry (via the Service.bind_to_registry() call), the service’s identity is included in the registry’s description of the service. In other words, the service’s classad will contain the identity string that is appropriate to be used by the Globus authorization-checking mechanisms when a client wishes to connect to the service.

· The application will keep its set of valid credentials in a data structure (let’s call it a CredentialBag for now). One of these credentials is designated the primary credential for the application. If no other credential is specified for the creation of a new server, or for the connection to a service, the primary credential will be used.

We have addressed one direction of authentication thus far: a client verifying the identity of the server with which it connects. We will now address the thornier problem of a server (service) authenticating clients and making access control decisions based on the client’s identity.

The problem that we wish to solve is this: the designer of an Access Grid service wishes to restrict access to that service to a certain class of users (or nodes, or machines. We will not worry about the distinction between these at the moment, as they are all identified by Globus-authenticated identity credentials). The degree of granularity of the access control can vary widely, from a very fine grain (only these users can have access during this short window of time), to very large grain (allow access to all users at DOE computing facilities).

There has been substantial work in the security community on policies for access control and in languages to express these policies. The solutions we outline here do not attempt to replace that work; rather, we are proposing a simple implementation solution that will allow us to progress further on the rollout of solid security mechanisms in a way that will let us experiment with different access control mechanisms. Wherever possible we wish to incorporate solutions the community has developed.

The Globus library provides a general-purpose mechansism for performing authorization checking on a per-connection basis: the authorization callback. This callback is a function that is registered with the Globus library, and is invoked each time a new connection request is processed. The value returned from the authorization callback determines the success of the connection: if true, the connection proceeds; if false, the connection fails and the application proceeds as if no connection ever happened. The Globus library provides the authorization callback with the security information relevant to the connection being processed: the identity of the client and the Globus security context in which the connection is made. (Question: has the client identity been verified against the known CAs yet at this point?) (Yes).

Appendix.:Examples of the Services API

A server is created like this:

server = AG.services.xmlrpc.Server.Server(port)

For a venues client, it is likely that the credential used to host the client’s services will be the Globus proxy under which the client executes.

To further support the use of credentials, we introduce an application object to be used to manage the credentials used in the application, and to assist in the correct binding of these credentials to newly-created servers and services. It will also enable the creation of outgoing client proxy handles. We envision use something like this:

app = AG.services.application.Application()

Create a server on the default credential

server = app.create_server()

Appendix: The vidmid mail on this topic:

Our current plans with respect to authentication are to leverage the mechanisms provided by the Globus Toolkit. Globus uses PKI identity certificates for its users, with a proxy delegation mechanism to implement single-signon. Servers are authenticated with host certificates (whose private keys are typically not protected by passphrases, at least as far as I can tell. I'm still learning how folks tend to use the Globus tools).

My current plan is to either use the Globus CA, or to set up an AG CA to issue general-purpose identity certificates. The thinking is that while this may not be as trustworthy as a Verisign or an ESnet CA (someone *could* break into my machine and steal the CA key, but it's not likely, and using the PKI solutiion is better than a database of passwords IMHO), it gives us a start towards thinking about how to roll out a system like this in practice.

However, this does not address two issues: how to manage roaming users, and how to manage one-off I-need-to-get-in-now users. The solutions to each are similar. For roaming users, the Globus folks have a tool called myProxy, which allows a user to upload a proxy of his identity certificate into a myProxy server. Then, later, he can authenticate to myProxy (using a passphrase set when he uploaded the proxy) and securely obtain a proxy of the myProxy proxy (:-).

For one-time users, I imagine a scheme where a user could log into a "certificate granting server", an online CA of sorts, that would create a certificate for the user and keep it locally. The user could then use the same mechanism that myProxy does to obtain a proxy to that certificate. Intelligent access control decisions can be made by observing who issued the certificate - if I'm paranoid about a resource, I can decide not to allow access to a user who obtained a certificate in this manner.

